王同华

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 现任大连理工大学化工学院教授、博士生导师。同时担任“膜科学与技术”期刊编委,膜学会理事(筹),膜工业协会工程与应用专业委员会及特种分离膜专业委员会委员、中国兵工学会活性炭测试分析与应用研究分会委员等。

性别:男

毕业院校:大连工学院

学位:硕士

所在单位:化工学院

学科:化学工艺. 膜科学与技术. 功能材料化学与化工

办公地点:化工综合楼A201

联系方式:微信/电话 13500711370

电子邮箱:wangth@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Optical, thermal and gas separation properties of acetate-containing copoly(ether-imide)s based on 6FDA and fluorenyl diamines

点击次数:

论文类型:期刊论文

发表时间:2019-11-01

发表刊物:HIGH PERFORMANCE POLYMERS

收录刊物:SCIE、EI

卷号:31

期号:9-10

页面范围:1101-1111

ISSN号:0954-0083

关键字:Copoly(ether-imide)s; acetate-containing; light-colored and transparent; thermal properties; gas separation

摘要:The diamine, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl]fluorene (BAHPPF) was synthesized by the modified two-step method. Then, a series of acetate-containing copoly(ether-imide)s were prepared by the copolymerization of BAHPPF, 9,9-bis(4-aminophenyl)fluorene (BAF) and 2,2 '-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) followed by chemical imidization. The structures and properties of the BAHPPF and copoly(ether-imide)s were characterized by nuclear magnetic resonance spectrometer (NMR), Fourier transform infrared spectrometer (FTIR), X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), ultraviolet-visible spectrophotometer (UV-VIS), and tensile testing. Single gas permeation performances of these copoly(ether-imide)s were also studied for five representative gases of interest including H-2, O-2, N-2, CO2, and CH4. The experimental results showed that the copoly(ether-imide)s showed excellent optical properties with high light transmittance above 80.2% at 450 nm. The glass transition temperature of these copolymers were higher than 333 degrees C. Their tensile strength and Young's module also increased, and the elongation decreased with the decrease of BAHPPF. High gas permeabilities of copoly(ether-imide)s were obtained, and the ideal selectivity of CO2/CH4 was improved due to the introduction of acetate group and flexible ether linkage. These copoly(ether-imide)s could be applied to the field of optics and gas separation.