Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

A method using successive iteration of analysis and design for large-scale topology optimization considering eigenfrequencies

Hits:

Indexed by:Journal Papers

First Author:Kang, Zhan

Correspondence Author:Kang, Z (reprint author), Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China.

Co-author:He, Jingjie,Shi, Lin,Miao, Zhaohui

Date of Publication:2020-04-15

Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

Included Journals:EI、SCIE

Volume:362

Issue:,SI

ISSN No.:0045-7825

Key Words:Topology optimization; Large scale; Natural frequency; Eigenvalue; Successive iteration of analysis and design

Abstract:Repeatedly solving the generalized eigenvalue problems by far dominates the computational cost in large-scale topology optimization involving natural frequency constraints. This study proposes a method for dynamic topology optimization problems considering natural frequencies using successively executed iterations for the structural analysis and design. By using the Rayleigh quotients as approximations of the natural frequencies and achieving sequential approximation of the eigenpairs through inverse iteration-like procedures to improve the eigenvectors along with the topological evolution of the structure, the method avoids solving the time-consuming eigenvalue problem in each design iteration. This makes the method particularly suitable for large-scale frequency-constrained topology optimization problems. The convergence property of the method is analyzed under the assumption of sufficiently small design changes between two successive design iterations. Numerical examples regarding frequency and frequency gap constraints show that this method is able to realize concurrent convergence of the eigenvalue analysis and design optimization, and is more efficient than the conventional double-loop approach. (C) 2020 Elsevier B.V. All rights reserved.

Pre One:Multi-material structural topology optimization considering material interfacial stress constraints

Next One:Layout optimization of continuum structures embedded with movable components and holes simultaneously

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com