郝策

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:南开大学

学位:博士

所在单位:化工学院

电子邮箱:haoce@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Elucidating triplet-sensitized photolysis mechanisms of sulfadiazine and metal ions effects by quantum chemical calculations

点击次数:

论文类型:期刊论文

发表时间:2015-03-01

发表刊物:CHEMOSPHERE

收录刊物:SCIE、EI、PubMed

卷号:122

页面范围:62-69

ISSN号:0045-6535

关键字:Sulfadiazine; Triplet-sensitized photolysis; Mechanism; DFT; Metal ions

摘要:Sulfadiazine (SDZ) mainly proceeds triplet-sensitized photolysis with dissolved organic matter (DOM) in the aquatic environment. However, the mechanisms underlying the triplet-sensitized photolysis of SDZ with DOM have not been fully worked out. In this study, we investigated the mechanisms of triplet-sensitized photolysis of SDZ(0) (neutral form) and SDZ(-) (anionic form) with four DOM analogues, i.e., fluorenone (FL), thioxanthone (TX), 2-acetonaphthone (2-AN), and 4-benzoylbenzoic acid (CBBP), and three metal ions (i.e., Mg2+, Ca2+, and Zn2+) effects using quantum chemical calculations. Results indicated that the triplet-sensitized photolysis mechanism of SDZ(0) with FL, TX, and 2-AN was hydrogen transfer, and with CBBP was electron transfer along with proton transfer (for complex SDZ(0)-CBBP2) and hydrogen transfer (for complex SDZ(0)-CBBP1). The triplet-sensitized photolysis mechanisms of SDZ(-) with FL, TX, and CBBP was electron transfer along with proton transfer, and with 2-AN was hydrogen transfer. The triplet-sensitized photolysis product of both SDZ(0) and SDZ(-) was a sulfur dioxide extrusion product (4(2-iminopyrimidine-1(2H)-yl)aniline), but the formation routs of the products for SDZ(0) and SDZ(-) were different. In addition, effects of the metal ions on the triplet-sensitized photolysis of SDZ(0) and SDZ(-) were different. The metal ions promoted the triplet-sensitized photolysis of SDZ(0), but inhibited the triplet-sensitized photolysis of SDZ(-). (C) 2014 Elsevier Ltd. All rights reserved.