location: Current position: Home >> Scientific Research >> Paper Publications

Hydrothermal synthesis of Fe2O3/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte

Hits:

Indexed by:Journal Papers

Date of Publication:2015-10-01

Journal:ELECTROCHIMICA ACTA

Included Journals:SCIE、EI、Scopus

Volume:178

Page Number:179-189

ISSN No.:0013-4686

Key Words:Non-precious metal electrocatalyst; Oxygen reduction reaction; Fe2O3/polypyrrole/graphene oxide; Fe-N-C; Long term stability

Abstract:Advantages in low cost, and excellent catalytic activity of Fe-based nanomaterials dispersed on nitrogendoped graphene supports render them to be good electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Here, Fe2O3/polypyrrole/graphene oxide (Fe2O3/Ppy/GO) composites with the Fe2O3 embedded in the Ppy modified GO are synthesized using hydrothermal method. With an optimal iron atom content ratio of 1.6% in graphene oxide and heat treatment at 800 degrees C, the Fe2O3/Ppy/GO exhibited enhanced catalytic performance for ORR with the onset potential of -0.1 V (vs SCE), cathodic potential of -0.24 V (vs SCE), an approximate 4e transfer process in O-2-saturated 0.1 M KOH, and superior stability that only reduced 5% catalytic activity after 5000 cycles. The decisive factors in improving the electrocatalytic and durable performance are the intimate and large contact interfaces between nanocrystallines of Fe2O3 and Ppy/GO, in addition to the high electron withdrawing/storing ability and the high conductivity of GO doped with nitrogen from Ppy during the hydrothermal reaction. The Fe2O3/Ppy/GO showed significantly improved ORR properties and confirmed that Fe-N-C-based electrocatalysts played a key role in fuel cells. (C) 2015 Elsevier Ltd. All rights reserved.

Pre One:Enhanced dyes removal properties of hollow SnO2 Microspheres and SnO2@C composites

Next One:Molecular simulation of adsorption of NO and CO2 mixtures by a Cu-BTC metal organic framework