• 其他栏目

    陈硕

    • 教授   博士生导师   硕士生导师
    • 主要任职:无
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 在职信息:在职
    • 所在单位:环境学院
    • 学科:环境工程 环境科学
    • 办公地点:大连理工大学环境学院B717
    • 联系方式:0411-84706263
    • 电子邮箱:

    访问量:

    开通时间 :..

    最后更新时间:..

    Direct growth of ultra- permeable molecularly thin porous graphene membranes for water treatment

    点击量:

    论文类型:期刊论文

    第一作者:Wei, Gaoliang

    通讯作者:Quan, X (reprint author), Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Sch Environm Sci & Technol, Dalian 116024, Peoples R China.

    合写作者:Quan, Xie,Li, Chao,Chen, Shuo,Yu, Hongtao

    发表时间:2018-12-01

    发表刊物:ENVIRONMENTAL SCIENCE-NANO

    收录刊物:SCIE

    卷号:5

    期号:12

    页面范围:3004-3010

    ISSN号:2051-8153

    摘要:Membranes have shown excellent performance in water treatment but still suffer from two important technical limitationsthe compromise between permeability and selectivity, and membrane fouling. Empirical evidence suggests that ultrathin membranes may achieve the ultimate permeation and the preclusion of irreversible fouling. Considering the atomic thickness of graphene, we present for the first time a direct growth method of molecularly thin porous graphene membranes, through a synchronous thermal conversion and chemical etching process. Such graphene membranes allow for ultrafast water permeation, affording a permeance of up to 182000 L m(-2) h(-1) bar(-1), which is 2 orders of magnitude higher than that of conventional membranes, with a similar pore size of approximately 50 nm, and comparable to that of the reported state-of-the-art membranes. Additionally, much higher recalcitrance to irreversible fouling (in terms of higher flux recovery after a simple hydrodynamic flush) is observed, compared with polyvinylidene fluoride ultrafiltration membranes, during the filtration of engineered polystyrene nanoparticles and humic acid molecules. Both the high permeability and resistance to irreversible fouling of the graphene membranes can be attributed to their molecularly thin structure, perpendicular pore channels and appropriate surface chemistry.