贾凌云

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:生物工程学院院长、党委副书记

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:生物工程学院

学科:生物工程与技术. 生物化工

办公地点:知微楼519房间

电子邮箱:lyjia@dlut.edu.cn

扫描关注

论文成果

当前位置: 贾凌云 >> 科学研究 >> 论文成果

In Silico understanding of the cyclodextrin-phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes

点击次数:

论文类型:期刊论文

发表时间:2015-03-21

发表刊物:JOURNAL OF HAZARDOUS MATERIALS

收录刊物:SCIE、EI、PubMed

卷号:285

页面范围:148-156

ISSN号:0304-3894

关键字:Cyclodextrin extraction; Phenanthrene; Polycyclic aromatic hydrocarbon degradation; Adaptive biased force; Molecular dynamics simulation; Bacterial membrane

摘要:The explicit-solvent molecular dynamic (MD) simulation and adaptive biased forces (ABF) methods were employed to systemically study the structural and thermodynamic nature of the beta-cyclodextrin (beta CD) monomer, phenanthrene (Phe) monomer, and their inclusion complexes in both the aqueous and membrane environments, aiming at clarifying the atomic-level mechanisms underlying in the CD-enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria. Simulations showed that beta CD and Phe monomers could associate together to construct two distinctive assemblies, i.e, beta CD1-Phe(1) and beta CD2-Phe(1), respectively. The membrane-involved equilibrium simulations and the data of potential of mean forces (PMFs) further confirmed that Phe monomer was capable of penetrating through the membranes without confronting any large energy barrier, whereas, the single beta CD and beta CD-involved assemblies were unable to pass across the membranes. These observations clearly suggested that beta CD only served as the carrier to enhance the bioavailability of Phe rather than the co-substrate in the Phe biodegradation process. The Phe-separation PMF profiles indicated that the maximum of the Phe uptake by bacteria would be achieved by the "optimal" beta CD:Phe molar ratio, which facilitated the maximal formation of beta CD1-Phe(1) inclusion and the minimal construction of beta CD2-Phe(1) complex. (C) 2014 Elsevier B.V. All rights reserved.