• 更多栏目

    王立成

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:土木工程系
    • 学科:结构工程. 水工结构工程. 港口、海岸及近海工程
    • 办公地点:建设工程学部4号楼316
    • 联系方式:wanglich@dlut.edu.cn
    • 电子邮箱:wanglich@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Effect of Fly Ash with Different Particle Size Distributions on the Properties and Microstructure of Concrete

    点击次数:

    论文类型:期刊论文

    第一作者:Cui, Yunpeng

    通讯作者:Liu, Jun,王立成,Liu, Runqing,Pang, Bo

    发表时间:2021-01-10

    发表刊物:JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE

    卷号:29

    期号:10

    页面范围:6631-6639

    ISSN号:1059-9495

    关键字:compressive strength; concrete; different particle sizes; fly ash

    摘要:Fly ash has become an important component of concrete as a supplementary cementitious material. Fly ash, as an admixture in concrete, has a great impact on the improvement of concrete properties and utilization of resources. In this work, fly ashes with different particle size distributions (S. Tsivilis, Andersen, normal and F distributions) were selected to prepare concrete. The relationships among the particle size distribution of the fly ash, compressive strength, hydration, pore structure and microstructure of the concrete were studied. The results showed that the compressive strength of the concrete increased at 28 d with fly ashes with the S. Tsivilis and F distributions. Moreover, the porosity of the concrete at 28 d was reduced, and the pore structure of the concrete was improved. The early compressive strength of the concrete increased with the fly ash with a normal distribution. The second hydration heat release rate of the concrete with fly ashes with a normal distribution and an F distribution was obviously faster. In addition to the Andersen distribution, other distributions of fly ash had obvious improvement effects on the pore structure of the concretes. High-performance concrete can be made from fly ash with different particle sizes, which avoids the need for ultrafine grinding with a high energy consumption and high-cost chemical excitation processes.