马海涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:材料科学与工程学院

办公地点:材料馆332

联系方式:15641188312

电子邮箱:htma@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Synchrotron radiation imaging study on the rapid IMC growth of Sn-xAg solders with Cu and Ni substrates during the heat preservation stage

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

收录刊物:SCIE、EI、Scopus

卷号:29

期号:1

页面范围:589-601

ISSN号:0957-4522

摘要:Synchrotron radiation X-ray real-time imaging technology was used to study the interfacial reactions of Sn and Sn3.5Ag solders with Cu and Ni substrates during the heat preservation stage. This experiment allows us to in-situ observe the interfacial intermetallic compounds (IMCs) growth, provides a stage to distinctly separate their growth at isothermal reflow and cooling durations, and thus avoids the measurement errors for size and morphology of interfacial IMCs. The results show that the Cu6Sn5 morphology is scalloped at Sn-xAg/Cu interfaces, whereas (Cu,Ni)(6)Sn-5 is wide-stripe shaped at Sn-xAg/Ni interface during the heat preservation stage. It is interesting to note that the grain boundary molten liquid gaps is observed at both of the Sn3.5Ag/Cu and Sn3.5Ag/Ni interfaces. Compared with pure Sn solder, Sn3.5Ag solders are observed with interfacial IMC of greater thickness, smaller base width, lower aspect ratio and more substrate consumption. In addition, it is confirmed that Ag3Sn grains appear in Sn3.5Ag solder, but not on the surface of existing interfacial Cu6Sn5 grains at Sn3.5Ag/Cu interface during the heat preservation stage. All of the growth kinetic index (n) for Sn-xAg/Cu is close to 1/3 indicating that grain boundary diffusion determines the interfacial reaction at the heat preservation stage. The mechanism by which Ag addition affects interfacial reaction and changes the mirostructure of solder matrix through creation of grain boundary gaps and decrease of the growth activation energy of IMC is also clarified. The knowledge for morphology and thickness control of interfacial IMCs by alloy elements addition as outlined by this study can be utilized to improve the reliability of solder joints in electronic packaging and solar photovoltaic (PV) cells array manufacturing sectors.