乔显亮

个人信息Personal Information

副教授

博士生导师

硕士生导师

任职 : 环境生态与工程研究生导师纵向党支部书记

性别:男

毕业院校:中科院南京土壤所

学位:博士

所在单位:环境学院

学科:环境科学

办公地点:环境楼B409

联系方式:办公电话:84707189 手机:13610848936

电子邮箱:xlqiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Bacterial community variations in paddy soils induced by application of veterinary antibiotics in plant-soil systems

点击次数:

论文类型:期刊论文

发表时间:2019-01-15

发表刊物:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY

收录刊物:SCIE、PubMed、Scopus

卷号:167

页面范围:44-53

ISSN号:0147-6513

关键字:Veterinary antibiotics; Bacterial community; Paddy soils; Metagenomic analysis

摘要:Soil bacterial communities have complex regulatory networks, which are mainly associated with soil fertility and ecological functions, and are likely to be disturbed due to antibiotics applications. The impact of antibiotics, particularly in mixtures form, on bacterial communities in different paddy soils is poorly understood. Using pyrosequencing techniques of 16 S rRNA genes, this study investigated the synergistic effects of veterinary antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, florfenicol, and clarithromycin) on bacterial communities in a soil-bacteria-plant system. Rice was grown under controlled greenhouse conditions where unplanted and planted treatments were doped with 200 mu g kg(-1) of combined antibiotics over a period of 3 months. Bacterial richness remained unaltered, while a significant decline was observed in bacterial diversity due to antibiotics in the four paddy soils. Bacteroidetes and Acidobacteria were increased, while Actinobacteria and Firmicutes decreased under antibiotics exposure. Despite antibiotics perturbation, compositional variations were mainly attributed to the different paddy soils which harbor distinct bacterial communities. Haliangium and Gaiella were among the sensitive genera that were negatively correlated to antibiotics perturbation. Additionally, electrical conductivity, total organic carbon, and total nitrogen of soil solution were the key physiochemical indices which significantly influenced the structure of bacterial communities in the paddy soils. These findings expanded our knowledge of effects from synergistic antibiotics application and variations in bacterial communities among different paddy soils.