陈飙松

个人信息Personal Information

研究员

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:力学与航空航天学院

学科:计算力学. 工程力学

办公地点:综合实验1号楼

电子邮箱:chenbs@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Evaluation of rotated upwind schemes for contact discontinuity and strong shock

点击次数:

论文类型:期刊论文

发表时间:2016-08-01

发表刊物:COMPUTERS & FLUIDS

收录刊物:SCIE、EI、Scopus

卷号:134

页面范围:11-22

ISSN号:0045-7930

关键字:Rotated upwind scheme; Carbuncle phenomenon; Shock-capturing; Dissipative density term; Contact discontinuity; Rotation strategy

摘要:Rotated upwind schemes have been evaluated as carbuncle-free shock-capturing methods. In order to reveal the relation between the rotated upwind-differencing direction and the performance of rotated upwind schemes, theoretical and numerical investigations are made. Three commonly used upwind schemes, including Roe scheme, AUSM(+) scheme and Van Leer scheme are investigated. According to the theoretical analysis, the dissipative terms of each upwind scheme are changed by the rotation procedure. Especially, the dissipative density term in the numerical flux function of rotated upwind schemes introduces extra dissipation. The numerical cases include simulations of laminar boundary layer, steady twin vortices and strong shock. The numerical results show that the carbuncle phenomenon can be eliminated by rotated upwind schemes, and the contact resolving capability of rotated upwind schemes is deteriorated by the rotation procedure. Monotonicity of the dissipation with rotation angle is also shown in the numerical results. Therefore, a novel rotation strategy that defines the rotation angle by a pressure weight function is introduced for tuning the dissipative effects adaptively. This strategy shows not only carbuncle-free result in hypersonic inviscid flow simulations, but also accurate results in viscous flow simulations. (C) 2016 Elsevier Ltd. All rights reserved.