location: Current position: Home >> Scientific Research >> Paper Publications

Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation


Indexed by:Journal Papers

First Author:Sun, J.

Co-authors:Liang, H.,Xia, X.,Li, C.,Xu, S.,Bian, J.,Li, P.,Qu, J.,Lu, X.,Xie, Y.,Gao, F.,Li, Y.,Gang, M.,Feng, Q.

Date of Publication:2019-01-01

Journal:Nano Energy

Included Journals:Scopus


Page Number:269-278

Key Words:Aluminum alloys; Aluminum compounds; Binary alloys; Digital devices; Energy harvesting; Evaporation; Nickel compounds; Plastic bottles; Thermal energy, Continuous and flexible generator; Electricity generation; Electricity output; Integrated circuit devices; Natural waters; Ni-Al layered double hydroxides; Output electrical characteristics; Streaming Potential, Electric power generation

Abstract:Natural water evaporation (NWE) is spontaneous and ubiquitous process that absorbs ambient thermal energy. Scavenging ambient thermal energy into electricity by NWE provides a promising approach to supply power for self-powered and low-cost devices and systems. Suitable materials and techniques are required to use this ubiquitous natural process for electricity generation. Herein, a continuous NWE-driven flexible generator is fabricated by painting Ni-Al layered double hydroxide (LDH) on a polyethylene terephthalate substrate at room temperature. The generator operates through an NWE-driven gradient of water that flows across the naturally formed surface-charged nanochannels between Ni-Al LDH flakes; i.e., the streaming potential mechanism. The output electrical characteristics of the device can be controlled by adjusting the environmental moisture and wind velocity. Continuous electricity output with a comparatively high power density of 16.1 μW cm−3 is achieved from a generator. The generator can maintain a stable output power under deformation. The output power of the generator can be scaled up to continuously power integrated circuit devices such as a digital calculator. Given the easy fabrication process of this flexible NWE-driven generator using an environmentally friendly LDH and its continuous electricity output with relatively high power density, this generator represents an important step towards practical green ambient energy harvesting. © 2018 Elsevier Ltd

Pre One:High performance and stable mesoporous perovskite solar cells via well crystallized FA0.85MA0.15Pb(I0.8Br0.2)3

Next One:Enhanced stability of perovskite solar cells using hydrophobic organic fluoropolymer