• 更多栏目

    张耀斌

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境科学与工程. 环境工程. 环境科学
    • 办公地点:环境楼B301
    • 电子邮箱:zhangyb@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Improving the co-digestion performance of waste activated sludge and wheat straw through ratio optimization and ferroferric oxide supplementation

    点击次数:

    论文类型:期刊论文

    第一作者:Zhao, Zisheng

    通讯作者:Zhang, YB (reprint author), Dalian Univ Technol, Sch Environm Sci & Technol, Minist Educ, Key Lab Ind Ecol & Environm Engn, Dalian 116024, Peoples R China.

    合写作者:Li, Yang,Quan, Xie,Zhang, Yaobin

    发表时间:2018-11-01

    发表刊物:BIORESOURCE TECHNOLOGY

    收录刊物:PubMed、SCIE、Scopus

    卷号:267

    页面范围:591-598

    ISSN号:0960-8524

    关键字:Co-digestion; Fe3O4; Ethanol-type fermentation; Acidic pH

    摘要:Low anaerobic digestion efficiency of wheat straw (WS) has been an intractable problem owing to its high C/N ratio and complex structure. In this study, co-digestion of WS and waste activated sludge (WAS) at different ratios was performed to identify conditions that would elevate the acidic pH and increase methane production. The results showed that using a 1:1 ratio of WS and WAS, methane production in the co-digester was 26.9% higher than the sum of equal WAS and WS mono-digestion. When Fe3O4 was added to the co-digester, the acidic pH was further relieved and the anaerobic digestion efficiency was additionally enhanced. Microbial analysis showed that the ethanol-type fermentative bacterial genus Ethanoligenens was enriched in the WAS + WS-Fe3O4 reactor, in which the production of propionate was notably reduced, indicating that Fe3O4 could prevent the accumulation of volatile fatty acids by changing the types of fermentative bacteria present and promote anaerobic digestion efficiency.