• 更多栏目

    张耀斌

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境科学与工程. 环境工程. 环境科学
    • 办公地点:环境楼B301
    • 电子邮箱:zhangyb@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge

    点击次数:

    论文类型:期刊论文

    发表时间:2019-10-15

    发表刊物:WATER RESEARCH

    收录刊物:EI、PubMed、SCIE

    卷号:163

    页面范围:114900

    ISSN号:0043-1354

    关键字:Fenton sludge; Anaerobic digestion; Dissimilatory iron reduction; Iron oxides; Humic acids

    摘要:Fenton sludge (FS) generated from Fenton process with high contents of iron and organic contaminants is regarded as a hazardous waste that requires to be properly disposed. Considering that Fe(III) compounds could stimulate dissimilatory iron reduction (DIR) and enrich iron reducing bacteria (IRB) that utilized Fe(III) as electron acceptor to oxidize organic matters, FS was introduced in anaerobic digestion (AD) reactors for treating wastewater meanwhile disposing FS. Results showed that methane production and organic matters removal significantly increased with dosing FS from 0 to 2.4 g. Also, a majority of organic matters involved in FS was mineralized, including 38.5% of PAHs removal. Humic acids (HA) with redox-activity involved in FS might affect efficiency of DIR. After extracting HA from FS, the rate and the extent of Fe(III) reduction of FS decreased by 33.2% and 13.9%, respectively. Together with analysis of the electron exchange capacity of HA, it suggested that the HA involved in FS might serve as an electron shuttle to effectively promote DIR. The increase of sludge conductivity and the enrichment of IRBs in microbial communities with dosage of FS were in agreement with the above results. (C) 2019 Elsevier Ltd. All rights reserved.