张玉

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:知渊楼B613

联系方式:zhangyu@dlut.edu.cn

电子邮箱:zhangyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Regeneration of spent NOx scrubber liquor using a dual-chamber microbial fuel cell

点击次数:

论文类型:期刊论文

发表时间:2015-09-01

发表刊物:JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY

收录刊物:SCIE、EI、Scopus

卷号:90

期号:9

页面范围:1692-1698

ISSN号:0268-2575

关键字:NOx removal; Fe(II)EDTA-NO; Fe(III)EDTA reduction; microbial fuel cells; Fe(II) oxidation coupled with nitric oxide reduction

摘要:BACKGROUNDWet absorption via addition of Fe(II)EDTA combined with biological reduction for nitric oxide removal is a promising approach. Based on existing issues and related studies of NOx scrubber solution, a dual-chamber MFC system with a biocathode was utilized to perform simultaneous and continuous reduction of Fe(III)EDTA and Fe(II)EDTA-NO with energy recovery.
   RESULTSThe experimental results showed that in this system almost all of the Fe(II)EDTA-NO was removed and the spent NOx scrubber liquor (consisting of Fe(II)EDTA-NO and Fe(III)EDTA) was regenerated 50%, combined with electricity generation of 15.3 Am-3 NCC at the same time. Microorganisms utilized Fe(II)EDTA and cathodic electrodes as electron donor for Fe(II)EDTA-NO reduction and, different from the complicated Fe(II)EDTA-NO reduction process, the electrode was the sole electron donor for Fe(III)EDTA reduction. Additionally, Fe(II)EDTA-NO and Fe(III)EDTA mutually inhibits each other, mostly due to the competition for electrons. The microbial community of the biocathode was dominated by members of the Betaproteobacteria class.
   CONCLUSIONThis study first proposed and confirmed that microbial fuel cells could be utilized for the regeneration of NOx removal liquor which provided a novel pathway for NO removal combined with energy recovery. (c) 2014 Society of Chemical Industry