张玉

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

办公地点:知渊楼B613

联系方式:zhangyu@dlut.edu.cn

电子邮箱:zhangyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Sulfate removal by Desulfovibrio sp CMX in chelate scrubbing solutions for NO removal

点击次数:

论文类型:期刊论文

发表时间:2013-09-01

发表刊物:BIORESOURCE TECHNOLOGY

收录刊物:SCIE、EI、PubMed

卷号:143

页面范围:455-460

ISSN号:0960-8524

关键字:Fe(II)EDTA-NO removal; Sulfate reducing bacteria; FeEDTA solutions; Nitrosyl-complex

摘要:To study the effects of Fe chelate solution and nitrosyl-complex (Fe(II)EDTA-NO), which might be introduced in the simultaneous biodesulfurization and denitrification process, on the sulfate removal process, a sulfate reducing bacteria Desulfovibrio sp. CMX was investigated for its sulfate removal capacity in the presence of Fe chelate additives and Fe(II)EDTA-NO. Meanwhile, Fe(II)EDTA-NO reduction was also investigated. The addition of Fe(II)EDTA and Fe(III)EDTA could stimulate the sulfate reduction performance. Although Fe(II)EDTA-NO could inhibit the strain, CMX could survive by consuming lactate and recover its sulfate reducing activity after Fe(II)EDTA-NO removed. Sulfate reduction could be enhanced in higher Fe(II)EDTA-NO concentrations (2 and 4 mM) by lactate applied at the middle stage of the experiment, and 72.2% and 62.6% sulfate were removed in 182 h, respectively. In this study, above 90% Fe(II)EDTA-NO (0.25-4 mM) was removed less than 60 h, which was much faster than sulfate reduction. (C) 2013 Elsevier Ltd. All rights reserved.