刘建卫

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水文学及水资源

联系方式:jwliu@dlut.edu.cn 0411-84706553

电子邮箱:jwliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China

点击次数:

论文类型:期刊论文

发表时间:2020-06-20

发表刊物:ENVIRONMENTAL MONITORING AND ASSESSMENT

收录刊物:SCIE

卷号:192

期号:7

ISSN号:0167-6369

关键字:Water quality; Assessment; Source apportionment; APCS-MLR; Pollutants; Artificial regulation

摘要:Dams and sluices break down the river continuum, alter the river hydrological regime, and intercept the migration processes of nutrients and pollutants. The regulation of dams and sluices will have great impacts on water quality characteristics in the river basin. In this study, variable fuzzy pattern recognition model (VFPR), principal component analysis/factor analysis (PCA/FA), and the absolute principal component score-multiple linear regression (APCS-MLR) were used to assess the water quality and identify the potential pollution sources in a highly regulated river of Northeast China. A set of water quality variables at three stations were measured from January 2015 to August 2017. The water quality assessment results showed that there were spatial and temporal variations of water quality and the total nitrogen (TN) and fecal coliforms (F. coli) were the major pollution factors of the study river section. Four pollution sources, including industrial effluent source, domestic sewage source, meteorological factor and atmospheric deposition source, and agricultural non-point source, were identified in dry and wet seasons using the PCA/FA method. The APCS-MLR results showed that the industrial effluent source was the main pollution source in dry seasons and had a decrease in wet seasons. While the mean contribution of the domestic sewage source had an increase in wet seasons, influenced by the sewage overflow and the flushing of pollutants during the extreme precipitation, the construction of dams decreased the flow obviously in wet seasons and increased in dry seasons. The increase in pollutants caused by storm runoff and the reduction of dilution water in the river channel could be the main reason for the water quality degradation in wet seasons.