房克照

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

办公地点:海洋工程研究所A204

电子邮箱:kfang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A phase-resolving beach evolution model based on fully nonlinear Boussinesq equations

点击次数:

论文类型:会议论文

发表时间:2010-06-20

收录刊物:EI、Scopus

卷号:3

页面范围:1069-1074

摘要:A phase-resolving beach profile model is developed to simulate beach profile changes under different wave conditions. The model consists of three modules, i.e., wave module, mean flow module and sediment transport module. The wave module is based on the fully nonlinear Boussinesq equations developed by Zou and Fang (alternative forms of the higher-order Boussinesq equations: derivations and validations. Coastal Engineering, 2009, 55(6):506-521). It is able to capture accurately the location of breaking point which plays a key role in generating sandbars. The mean flow module considers undertow and the shear stress just on the top of the bottom, the former is described by a simple ad-hoc method (by Lynett, wave breaking velocity effects in depth-integrated models. Coastal Engineering, 2006, 53(4):325-333.) while the latter is considered by numerically solving Wave Bottom Boundary Layer (WBBL) equation. Finally, the beach updating model based on Weighted Essentially Non-Oscillatory (WENO) scheme (by Long et al., a numerical scheme for morphological bed level calculations. Coastal Engineering, 2008,55:167-180.) is adopted due to its efficiency. Other processes such as the new total sand transport rate formula which could take wave asymmetric and skewness into account is also incorporated into the model. The numerical results from the model are presented and compared with those from the other similar models. ? 2010 by The International Society of Offshore and Polar Engineers (ISOPE).