• 更多栏目

    张建军

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:南京大学
    • 学位:博士
    • 所在单位:化学学院
    • 学科:无机化学
    • 办公地点:化工综合楼D411
    • 联系方式:0411-84986036
    • 电子邮箱:zhangjj@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Structural and biochemical characterization of the yeast HD domain containing protein YGK1 reveals a metal-dependent nucleoside 5'-monophosphatase.

    点击次数:

    论文类型:期刊论文

    发表时间:2018-01-01

    发表刊物:Biochemical and biophysical research communications

    收录刊物:PubMed、SCIE

    卷号:501

    期号:3

    页面范围:674-681

    ISSN号:1090-2104

    关键字:HD domain containing protein; 5 ' nucleotidase; Dimerization; Nucleoside 5 '; Monophosphate

    摘要:HD-domain is a conserved domain, with the signature of histidine and aspartic (HD) residues doublets. HD-domain proteins may possess nucleotidase and phosphodiesterase activities, and they play important roles in signaling and nucleotide metabolism. In yeast, HD-domain proteins with nucleotidase activity remained unexplored. Here, we biochemically and structurally characterized two HD domain proteins YGK1 (YGL101W) and YB92 (YBR242W) from Saccharomyces cerevisiae as nucleoside 5'-monophosphatases, with substrate preference for deoxyribonucleoside 5'-monophosphatase over ribonucleoside 5'-monophosphatase. By determining the crystal structure of YGK1, we unveiled that YGK1 structure resembled as the crystal structure of YfbR from E.coli. Size-exclusion chromatography and crosslinking studies suggested that YGK1 and YB92 existed in the form of a dimer, respectively, which were consistent with structural observation of YGK1. Site-directed mutagenesis demonstrated that more extensive conserved residues near the divalent metal coordinating active site were essential for YGK1 activity than previous suggested. The metal coordinating His89 and Asp90, and the neighboring conserved Glu93, Glu114 and Glu145 were individually critical for catalysis. In addition, alignments suggested that three flexible loops with hydrophobic residues might be implicated in substrate selectivity to nucleoside moiety. Together, our comparative structural and mutational studies suggested that YGK1 and YB92 functioned as 5'-nucleotidases in S.cerevisiae. Copyright © 2018 Elsevier Inc. All rights reserved.