段庆林
Personal Homepage
Paper Publications
Thermodynamic framework for damage-healing-plasticity of granular materials and net damage variable
Hits:

Indexed by:期刊论文

Date of Publication:2016-03-01

Journal:INTERNATIONAL JOURNAL OF DAMAGE MECHANICS

Included Journals:SCIE、EI、Scopus

Volume:25

Issue:2

Page Number:153-177

ISSN No.:1056-7895

Key Words:Granular materials; Cosserat continuum; discrete particle assembly; meso-mechanically informed damage-ealing and plasticity; thermodynamic framework; anisotropic net damage and damage-healing variables

Abstract:Based on the meso-structured Voronoi cell model for discrete particle assembly and the derived meso-mechanically informed constitutive relations of anisotropic Cosserat continuum, thermodynamic framework of isothermal meso-mechanically informed damage-healing and plastic process for granular materials is presented. The accumulated net (effective) damage factor tensor combining both material damage and healing effects is defined in terms of the initial (undamaged) and current (damaged) elastic moduli tensors of the meso-structured Voronoi cell attributed to the material point. According to the non-negativity of thermodynamic energy dissipations, the net damage variable is separated into the two component internal state variables; i.e. the damage and healing variables, which are accumulated in terms of incremental damage and healing variables, respectively. The meso-mechanically informed macroscopic damage-healing and plastic characterization are achieved without the need to specify macroscopic phenomenological damage, healing and plastic criteria, and their evolution laws. The merit of the proposed tensorial net damage and healing variables in modeling healing effects on initial weakened elastic stiffness (i.e. initial material defects) is demonstrated in terms of their isotropic scalar forms and integrated into the continuum damage-healing mechanics. The numerical results conceptually illustrate the performance of the proposed definitions of meso-mechanically informed net damage, damage, and healing variables. The coupled damage-healing and plastic process in anisotropic Cosserat continuum for granular materials is characterized in terms of densities of thermodynamic dissipations that make effects of the damage-healing and the plastic component processes on the material failure quantitatively comparable.

Personal information

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Gender:Male

Alma Mater:大连理工大学

Degree:Doctoral Degree

School/Department:力学与航空航天学院

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version