史彦涛

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:清华大学

学位:博士

所在单位:化学学院

学科:物理化学. 材料物理与化学. 无机化学

办公地点:西部校区化工综合楼C313

联系方式:0411-84986237

电子邮箱:shiyantao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Surface Oxygen Vacancy-Dependent Electrocatalytic Activity of W18O49 Nanowires

点击次数:

论文类型:期刊论文

发表时间:2014-09-04

发表刊物:JOURNAL OF PHYSICAL CHEMISTRY C

收录刊物:SCIE、EI、Scopus

卷号:118

期号:35

页面范围:20100-20106

ISSN号:1932-7447

摘要:Surface oxygen vacancies (SOVs) are the most relevant surface defects in metal oxides (MOs), and they participate in numerous physical and chemical reactions. However, information on the nature, distribution, formation, and reactivity of SOVs, as well as relationships among SOVs, is lacking. Investigating SOVs is difficult because of disturbance by the crystal phase, morphology of bulk materials, and synergistic effect between substrate and catalyst host. Herein, by clarifying the origin of SOVs and their distribution, one-dimensional (1D) tungsten oxide nanowires (NWs) with numerous SOVs were synthesized. Compared with the three-dimensional nanostructure, the high aspect ratio of ID NW exposed the SOVs on the surface of the nanostructure rather than embedding them in the bulk. To investigate accurately the effect of SOVs on electrocatalytic activity, we dearly identified how SOVs of tungsten oxide catalyst regulate iodide reduction reactions in the solar cell by in situ filling of SOVs in electrodes and maintaining the crystal phase and morphology of NWs. Iodide reduction reaction activity was notably dependent on tungsten oxide catalyst SOVs, which serve as important catalytic site descriptors. These findings may clarify the fundamental features of SOVs on metal oxides and contribute to the rational design of efficient catalysts and supports.