康慧君

(教授)

 博士生导师  硕士生导师
学位:博士
性别:男
毕业院校:哈尔滨工业大学
所在单位:材料科学与工程学院
电子邮箱:kanghuijun@dlut.edu.cn

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys

发表时间:2019-07-01 点击次数:

论文名称:The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys
论文类型:期刊论文
发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
收录刊物:SCIE、EI
卷号:758
页面范围:130-138
ISSN号:0921-5093
关键字:Cu-Cr-Zr-Hf alloy; Tensile strength; Ductility; Electrical conductivity
摘要:The trace Hf element (0.2 wt%) was added into the Cu-0.4Cr-0.2Zr (wt.%) alloy to achieve synchronous improvements in strength, ductility and electrical conductivity. The roles of the Hf element in the microstructural evolution and the mechanical and electrical properties were investigated via transmission electron microscopy (TEM), X-ray line broadening analysis and tensile tests. The results showed that the trace Hf element effectively decreased the stacking fault energy of copper alloys. The synergetic effect of the Hf element and the intermediate aging treatment contributed to the formation of high-density dislocations, profuse deformation twins and refined deformation bands in the Cu-0.4Cr-0.2Zr-0.2Hf alloy, thereby enhancing its tensile strength by similar to 51 MPa. The addition of Hf also significantly improved the ductility of the copper alloys due to the presence of deformation twins. High strength (628 MPa), high ductility (similar to 5%) and high electrical conductivity (80.35% IACS) have been achieved simultaneously in the Cu-0.4Cr-0.2Zr-0.2Hf alloy subjected to the intermediate aging treatment.
发表时间:2019-06-05