刘涛

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:哈尔滨工业大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学. 市政工程

办公地点:环境楼607室

电子邮箱:taoliu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Enhancing anaerobic digestion in anaerobic integrated floating fixed-film activated sludge (An-IFFAS) system using novel electron mediator suspended biofilm carriers

点击次数:

论文类型:期刊论文

发表时间:2020-03-07

发表刊物:Water research

收录刊物:PubMed

卷号:175

页面范围:115697

ISSN号:1879-2448

关键字:An-IFFAS,Biofilm carrier,CH(4) recovery,Direct interspecies electron transfer (DIET),Graphite

摘要:Suspended biofilm carriers mediating direct interspecies electron transfer (DIET)-based syntrophic metabolism is a promising strategy to enhance anaerobic digestion and methane production by associating the advantages of conductive suspended biofilm carriers and anaerobic integrated floating fixed-film and activated sludge (An-IFFAS) process. However, the current knowledge of DIET using conductive suspended biofilm carrier is still limited. In this study, novel electron mediator suspended biofilm carriers had been prepared by introducing a series of graphite powders (3 wt%, 5 wt% and 7 wt%) into high-density polyethylene (HDPE), and applied in An-IFFAS reactors. Results showed that An-IFFAS reactors filled with graphite-modified carriers could enhance the degradation of organic matters and the production of methane significantly in comparison with the control reactor filled with conventional HDPE carriers at organic loading rates (OLRs) of 5.9-23.7 kg COD/m3/d. Microbial analysis proved that 7 wt% graphite-modified carrier improved approximately 4.2% abundance of Geobacter and 7.3% abundance of electrotrophic methanogens (Methanothrix) that exchange electron via DIET comparing with that of HDPE carriers, respectively. These findings demonstrated that electron mediator suspended biofilm carrier was able to potentially proceed DIET and enhance the efficiency of anaerobic digestion and recover CH4-related energy.Copyright © 2020 Elsevier Ltd. All rights reserved.