Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Wang Xiaofeng

Associate Professor
Supervisor of Master's Candidates


Gender:Female
Alma Mater:山东大学
Degree:Doctoral Degree
School/Department:公共基础学院
Discipline:Condensed Matter Physics. Optics
Business Address:盘锦校区C08-305
E-Mail:wangxf@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature

Hits : Praise

Indexed by:期刊论文

Date of Publication:2018-04-15

Journal:CHEMICAL ENGINEERING JOURNAL

Included Journals:SCIE、EI

Volume:338

Page Number:504-512

ISSN No.:1385-8947

Key Words:Acetone; Gas sensor; NiFe2O4 nanocubes; Low concentration; Prussian Blue analogue

Abstract:Real-time detection of acetone vapor at low concentration plays a decisive role in early noninvasive diagnosis of diabetes. In this work, porous NiFe2O4 crystalline nanocubes have been scalably prepared via an as-developed cost-efficient and facile strategy, which involves a morphology-inherited annealing treatment of single-resource Prussian Blue analogue of Ni-3[Fe(CN)(6)](2)center dot xH(2)O solid nanocubes as self-sacrificial templates. The porous NiFe2O4 crystalline nanocubes are demonstrated to be composed of primary nano building blocks and interconnected pores. When utilized as sensing materials, the as-synthesized NiFe2O4 exhibited p-type gas-sensing behavior that the resistance increases in a reducing gas atmosphere. Furthermore, the as-fabricated NiFe2O4 sensor was sensitive and selective to acetone gas with an obvious response value of 1.9 at its low concentration (1 ppm) and low detection of limit (0.52 ppm) at a quite low working temperature (160 degrees C). In addition, the sensing mechanism is deeply investigated. More significantly, our prominent findings herein shed light on the fabrication of metal oxide based gas sensors in environmental and medicinal fields.