Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
DUAN Ben

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Academic Titles:
Gender:Male
Alma Mater:The Chinese University of Hong Kong
Degree:Doctoral Degree
Status:On the job
School/Department:School of Mathematics, Dalian University of Technology
Discipline:Applied Mathematics
Business Address:Office: Room1135, Innovation Park Building, DLUT
E-Mail:
Click: times

The Founding Time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

SUBSONIC SOLUTIONS FOR STEADY EULER-POISSON SYSTEM IN TWO-DIMENSIONAL NOZZLES

Hits : Praise

Indexed by:Journal Papers

First Author:Bae, Myoungjean

Correspondence Author:Bae, M (reprint author), POSTECH, Dept Math, Pohang, Gyungbuk, South Korea.

Co-authors:Duan, Ben,Xie, Chunjing

Date of Publication:2014-01-01

Journal:SIAM JOURNAL ON MATHEMATICAL ANALYSIS

Included Journals:SCIE、EI

Volume:46

Issue:5

Page Number:3455-3480

ISSN No.:0036-1410

Key Words:Euler-Poisson system; subsonic flow; Helmholtz decomposition; stream function; elliptic system

Abstract:In this paper, we prove the existence and stability of subsonic flows for a steady full Euler-Poisson system in a two-dimensional nozzle of finite length when imposing the electric potential difference on a noninsulated boundary from a fixed point at the entrance, and prescribing pressure at the exit of the nozzle. The Euler-Poisson system for subsonic flow is a hyperbolic-elliptic coupled nonlinear system. One of the crucial ingredients of this work is the combination of Helmholtz decomposition for the velocity field and stream function formulation. In terms of the Helmholtz decomposition, the Euler-Poisson system is rewritten as a second order nonlinear elliptic system of three equations and transport equations for entropy and pseudo-Bernoulli's invariant. The associated elliptic system in a Lipschitz domain with nonlinear boundary conditions is solved with the help of the estimates developed in [M. BAE, B. DUAN, and C. J. XIE, Existence and Stability of Multidimensional Steady Potential Flows for Euler-Poisson Equations, preprint, arXiv:1211.5234, 2012] based on its nice structure. The transport equations are resolved via the flow map induced by the stream function formulation. Furthermore, the delicate estimates for the flow map give the uniqueness of the solutions.