刘进轩

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:大连理工大学莱斯特国际学院副院长

性别:男

毕业院校:波鸿大学

学位:博士

所在单位:化工学院

学科:应用化学. 精细化工

办公地点:大连理工大学西部校区精细化工国家重点实验室E段221

联系方式:+86-411-84986487

电子邮箱:jinxuan.liu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Smart polymer-based calcium-ion self-regulated nanochannels by mimicking the biological Ca2+-induced Ca2+ release process

点击次数:

论文类型:期刊论文

发表时间:2019-08-30

发表刊物:NPG ASIA MATERIALS

收录刊物:SCIE、EI

卷号:11

期号:1

ISSN号:1884-4049

摘要:In nature, ion channels play key roles in controlling ion transport between cells and their surroundings. Calcium ion (Ca2+)-induced Ca2+ release (CICR), a critical control mechanism for Ca2+ channels, occurs due to a Ca2+ concentration gradient working in synergy with ryanodine receptors, which are famously known as "calcium sparks". Inspired by this self-regulated biological process, a smart Ca2+ concentration-modulated nanochannel system was developed by integrating a poly{N-isopropylacrylamide-co-acrylamide-[4-(trifluoromethyl) phenyl]-2-thiourea(0.2)-co-acrylamideDDDEEKC(0.2)} (denoted as PNI-co-CF3-PT0.2-co-DDDEEKC0.2) three-component copolymer onto the nanochannels of a porous anodic alumina (PAA) membrane. In this smart polymer design, the DDDEEKC hepta-peptide unit has an extraordinary binding affinity with Ca2+ through coordination bonds, while CF3-PT functions as a hydrogen bond mediation unit, facilitating the remarkable conformational transition of the PNI main chain in response to Ca2+-specific adsorption. Due to these futures, the dynamic gating behaviors of the modified nanochannels could be precisely manipulated by the Ca(2+)concentration. In addition, the sensitive Ca2+ response, as low as 10 pM with a high specificity toward Ca2+ capable of discriminating Ca2+ from other potential interference metal ions (e.g., K+, Cu2+, Mg2+, Zn2+, Fe3+, and Al3+), remarkable morphological change in the nanochannel and satisfactory reversibility indicate the great potential of Ca2+-responsive polymers for the fabrication of biodevices and artificial nanochannels.