Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
薛春东

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:中国科学院大学
Degree:Doctoral Degree
School/Department:医学部
Discipline:Biomedical Engineering. Fluid Mechanics. Measuring Technology and Instrument
Business Address:厚坤楼A201
Contact Information:xuechundong@dlut.edu.cn
E-Mail:xuechundong@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

A high-throughput microfluidic device for probing calcium dynamics of single cells squeezing through narrow channels

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2019-11-01

Journal:JOURNAL OF MICROMECHANICS AND MICROENGINEERING

Included Journals:SCIE

Volume:29

Issue:11

ISSN No.:0960-1317

Key Words:intracellular calcium response; dynamic mechanical stimuli; mechanotransduction; cancer cell phenotype; microfluidic device

Abstract:To probe intracellular calcium response while single cells squeeze through narrow channels, we built a high-throughput microfluidic device where single cells can be trapped efficiently and stimulated mechanically. With this device, dozens of single cells' dynamic morphologies and intracellular [Ca2+] responses under dynamic mechanical stimuli can be monitored simultaneously. We observed a two-peak [Ca2+] response, which was closely coupled together with the dynamic cellular squeezing process. This type of [Ca2+] response, to our knowledge, was observed for the first time. We also investigated the role of the cytoskeleton in the [Ca2+] response and found that the cytoskeleton was an important regulator of [Ca2+] signaling during the cellular squeezing process. In addition, we investigated the difference between the two-peak [Ca2+] responses of Hela cells and HUVECs and found that one characteristic parameter could distinguish Hela cells from HUVECs.