大连理工大学  登录  English 
马建伟
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 机械工程学院

学科: 机械电子工程. 机械制造及其自动化

办公地点: 机械工程学院知方楼5037室

联系方式: 0411-84707876

电子邮箱: mjw2011@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Heat partition in dry orthogonal cutting of unidirectional CFRP composite laminates

点击次数:

论文类型: 期刊论文

第一作者: Wang, Fu-ji

通讯作者: Ma, JW (reprint author), Dalian Univ Technol, Sch Mech Engn, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 116024, Peoples R China.

合写作者: Yin, Jun-wei,Ma, Jian-wei,Niu, Bin

发表时间: 2018-08-01

发表刊物: COMPOSITE STRUCTURES

收录刊物: SCIE

卷号: 197

页面范围: 28-38

ISSN号: 0263-8223

关键字: Heat partition; Composite; CFRP; Cutting; Fiber orientation

摘要: Carbon fiber reinforced polymer (CFRP) components can be generally prepared near-net-shape, however, they still need machining after manufacturing to meet the geometrical accuracy with excellent surface quality required for assembly. Due to the cutting temperature is prone to exceed the glass-transition temperature of the resin, the irreversible chemical and mechanical degradation are therefore difficult to avoid. It becomes a crucial challenge to eliminate the particular thermal effect on the composite machining process. In comparison with the temperature measurement, the analytical model not only can reveal the physical essence of thermal effect, but also can predict the temperature field distribution to provide the reasonable cutting parameters. In particular, a key parameter for calculating the cutting temperatures is the heat partition ratio. However, the research work on this issue was rarely found. In this paper, a fiber orientation-based analytical model was developed to predict the heat partition ratio based on the classical Hertz contact theory. The finite element model was also built with the validation of the experimental measurement from the thermal imaging tests. The results suggest the heat partition ratio is mainly determined by the cutting parameters. Moreover, the fiber orientations have a remarkable impact on this ratio. Due to the heat partition ratio is considerably larger in a CFRP workpiece than the cutting tool, more heat energy was transferred to the CFRP during machining. Therefore, a small depth of cut leads to a reduced tendency for thermal effect on the CFRP composites.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学