Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Wang Zhelong

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Main positions:Professor, Head of Lab of Intelligent System
Other Post:自动化技术研究所所长
Gender:Male
Alma Mater:University of Durham
Degree:Doctoral Degree
School/Department:School of Control Science and Engineering
Discipline:Control Theory and Control Engineering. Pattern Recognition and Intelligence System. Detection Technology and Automation Device
Business Address:Lab of Intelligent System
http://lis.dlut.edu.cn/

Contact Information:0411-84709010 wangzl@dlut.edu.cn
E-Mail:wangzl@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Using Distributed Wearable Sensors to Measure and Evaluate Human Lower Limb Motions

Hits : Praise

Indexed by:期刊论文

Date of Publication:2016-04-01

Journal:IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

Included Journals:SCIE、EI

Volume:65

Issue:4

Page Number:939-950

ISSN No.:0018-9456

Key Words:Denavit-Hartenberg (DH) convention; foot kinematics; motion tracking; wearable sensors; zero velocity updates (ZUPTs)

Abstract:This paper presents a wearable sensor approach to motion measurements of human lower limbs, in which subjects perform specified walking trials at self-administered speeds so that their level walking and stair ascent capacity can be effectively evaluated. After an initial sensor alignment with the reduced error, quaternion is used to represent 3-D orientation and an optimized gradient descent algorithm is deployed to calculate the quaternion derivative. Sensors on the shank offer additional information to accurately determine the instances of both swing and stance phases. The Denavit-Hartenberg convention is used to set up the kinematic chains when the foot stays stationary on the ground, producing state constraints to minimize the estimation error of knee position. The reliability of this system, from the measurement point of view, has been validated by means of the results obtained from a commercial motion tracking system, namely, Vicon, on healthy subjects. The step size error and the position estimation accuracy change are studied. The experimental results demonstrated that the extensively existed sensor misplacement and sensor drift problems can be well solved. The proposed self-contained and environment-independent system is capable of providing consistent tracking of human lower limbs without significant drift.