Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Wang Zhelong

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Main positions:Professor, Head of Lab of Intelligent System
Other Post:自动化技术研究所所长
Gender:Male
Alma Mater:University of Durham
Degree:Doctoral Degree
School/Department:School of Control Science and Engineering
Discipline:Control Theory and Control Engineering. Pattern Recognition and Intelligence System. Detection Technology and Automation Device
Business Address:Lab of Intelligent System
http://lis.dlut.edu.cn/

Contact Information:0411-84709010 wangzl@dlut.edu.cn
E-Mail:wangzl@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Bayesian multi-instance multi-label learning using Gaussian process prior

Hits : Praise

Indexed by:期刊论文

Date of Publication:2012-07-01

Journal:MACHINE LEARNING

Included Journals:SCIE、EI

Volume:88

Issue:1-2,SI

Page Number:273-295

ISSN No.:0885-6125

Key Words:Multi-label learning; Gaussian process; Multi-instance multi-label learning; Laplace approximation

Abstract:Multi-instance multi-label learning (MIML) is a newly proposed framework, in which the multi-label problems are investigated by representing each sample with multiple feature vectors named instances. In this framework, the multi-label learning task becomes to learn a many-to-many relationship, and it also offers a possibility for explaining why a concerned sample has the certain class labels. The connections between instances and labels as well as the correlations among labels are equally crucial information for MIML. However, the existing MIML algorithms can rarely exploit them simultaneously. In this paper, a new MIML algorithm is proposed based on Gaussian process. The basic idea is to suppose a latent function with Gaussian process prior in the instance space for each label and infer the predictive probability of labels by integrating over uncertainties in these functions using the Bayesian approach, so that the connection between instances and every label can be exploited by defining a likelihood function and the correlations among labels can be identified by the covariance matrix of the latent functions. Moreover, since different relationships between instances and labels can be captured by defining different likelihood functions, the algorithm may be used to deal with the problems with various multi-instance assumptions. Experimental results on several benchmark data sets show that the proposed algorithm is valid and can achieve superior performance to the existing ones.