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ABSTRACT

Due to the imaging limitation of depth sensors, high-resolution
(HR) depth maps are often difficult to be acquired direct-
ly, thus effective depth super-resolution (DSR) algorithms
are needed to generate HR output from its low-resolution
(LR) counterpart. Previous methods treat all depth regions
equally without considering different extents of degradation
at region-level, and regard DSR under different scales as
independent tasks without considering the modeling of differ-
ent scales, which impede further performance improvement
and practical use of DSR. To alleviate these problems, we
propose a deep controllable slicing network from a novel per-
spective. Specifically, our model is to learn a set of slicing
branches in a divide-and-conquer manner, parameterized by
a distance-aware weighting scheme to adaptively aggregate
different depths in an ensemble. Each branch that specifies a
depth slice (e.g., the region in some depth range) tends to
yield accurate depth recovery. Meanwhile, a scale-controllable
module that extracts depth features under different scales is
proposed and inserted into the front of slicing network, and
enables finely-grained control of the depth restoration results
of slicing network with a scale hyper-parameter. Extensive
experiments on synthetic and real-world benchmark datasets
demonstrate that our method achieves superior performance.
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1 INTRODUCTION

3D content of a given scene consists of two components, i.e.,
two-dimensional texture (color) image, and depth information
of a third dimension. Scene depth map is essential and widely
used as a basic element in many computer vision fields, such
as 3D reconstruction [18] [43], autonomous navigation [30]
[11], monitoring [8] [10], and so on. However, the acquisition
of depth maps is still a challenging task in real conditions,
which needs costive specialized equipment, e.g., Time-of-
Flight (ToF) depth sensors. Due to the imaging limitation
of these depth sensors, high-resolution (HR) depth maps
are often difficult or even impossible to be acquired directly.
Hence, effective depth super-resolution (DSR) algorithms are
needed to yield HR output from the degraded low resolution
(LR) counterpart. Recently, CNN-based methods [13, 24, 40,
41] have been proposed to recover depth maps by learning a
set of kernels or filters from data instead of hand-designed
ones. Although these CNN-based methods present impressive
performance, the task of DSR still needs to be improved
because of its unsatisfactory performance in terms of accuracy
and practicality.

1.1 Motivation

Scene depth recovery depends on scene characteristics, i.e.,
depth regions on close-view and tiny objects are inclined to be
destroyed by downsampling degradation more seriously than
the far-view object and background. Meanwhile, most existing
DSR methods [13, 40] have unbalanced estimation in one
depth map with a same model. Hence, it may cause inaccurate
depth recovery for different depth regions. Besides, depth map
captured by a depth sensor are usually polluted with distance-
dependent Gaussian noise, i.e, the intensity of the noise
depends on the scene depth [5]. However, previous studies
mainly focus on a single model to process all regions of a depth
map without considering the above complex degradation
at region-level, which is suboptimal due to the statistical,
computational, and representational limitations. Therefore,
we expect to develop a new method to discriminately process
each region within a depth map by its depth range in the
scenario of DSR.

In addition, most existing algorithms treat DSR task of
different scale factors (×2, ×4, ×8, ×16) as independent
problems, and require many scale-specific networks that need
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to be trained independently to deal with various scales. How-
ever, in real world applications, the truly-wanted upscaling
factors of the given scenes are fractional (not integer) or even
unknown. Alternatively testing on the current LR input to
find a suitable model among all the well-trained scale-specific
ones is time-consuming and impractical, or even cannot ob-
tain the desired results. Moreover, perceptual quality of the
restored depth map is relatively subjective, and it is necessary
for the model to finely-grained control the depth restoration
according to image characteristics, which cannot be done us-
ing existing deterministic networks. Therefore, a controllable
network with high generalization ability to different upscaling
factors is needed.

1.2 Scope and Contributions

Based on the above analyses, this paper breaks away the
shackles of general paradigms and introduces a distance-aware
deep controllable slicing network from a novel perspective,
as shown in Fig. 1. Specifically, we propose a slicing network
architecture to learn a set of slicing branches to specify some
depth range, and this novel network tends to yield accurate
depth recovery in a divide-and-conquer manner. To make
each branch more accurate at representing different depth,
we propose a distance-aware weighting scheme to generate a
set of weighting masks from the depth map features, which
are applied on the estimated results from the slicing branches
to make these branches focus on their specific depth region-
s, and adaptively aggregate all the slicing branches in the
ensemble. Meanwhile, we design a scale-controllable module
that extracts different depth features before the slicing net-
work, which realizes to super-resolve LR images with different
downscaling factors. The module consists of three branch-
es, i.e., generalized branch (GB), specialized branch (SB),
and fusion branch (FB). GB aims to extract the common
features from the input, while SB takes the given scale pa-
rameter and its corresponding LR depth map as input, then
the generated specialized features that contain different scale
information are fused with the features of GB through FB in
a multi-scale fashion, enabling a richer depth representation.
The proposed module can finely-grained control the depth
restoration according to different depth map degradation
through the pre-defined scale hyper-parameter. Our main
contributions are summarized as follows:

1) An end-to-end deep controllable slicing network to real-
ize region-level depth recovery and high generalization ability
for the task of DSR.

2) A scale-controllable module (SCM), which realizes the
fine-grained control of depth restoration with arbitrary mag-
nification in one united model.

3) A depth slicing module (DSM), which discriminately
uses depth map features with different depth ranges to super-
resolve the depth map in a divide-and-conquer manner.

Note that our method stands on single depth map SR
without the aid of color information, but performs better
than other color-guided DSR methods on both synthetic and
real-world datasets. Besides, our model that is trained on all

the scales together is also superior to other state-of-the-art
scale-specific models that are trained independently on each
scale.

2 RELATED WORK

2.1 CNN-based Depth Super-Resolution

Depending on the input data, DSR methods can be mainly
divided into single depth map SR with only LR depth map
as input and color-guided DSR with LR depth map and its
corresponding HR color image as input.

Riegler et al. [32] integrated the piecewise affine structures
into an CNN which combines the advantage of data driven
methods and energy minimization models to recover the
accurate HR depth map. Hui et al. [17] proposed a low-to-
high resolution network to progressively extract features and
raise the spatial resolution. Some existing DSR methods use
color information as guidance to recover the degraded depth
maps. Li et al. [25] employed a two-path CNN to obtain
the HR depth map which is designed based on the concept
of joint filters. Based on the model of single DSR, Hui et
al. [17] also applied a gradual up-sampling method with a
hierarchical color guidance module, which further exploits
the dependency between color and depth structure to resolve
ambiguity in DSR. Wen et al. [40] used the color information
as guidance to infer an initial HR depth map, then proposed
a coarse-to-fine networks to progressively optimize the depth
map. Wang et al. [39] put forward a DSR network to learn
a binary map of depth edges and then recovered the HR
depth map based on edge-guided filter or cascaded network
modules. However, due to treating all depth regions equally
without considering depth range variation, there is still room
for the above methods to make further improvement.

2.2 Ensemble Strategy

For image restoration tasks, the ensemble strategy has been
explored to boost a network’s performance. As studied in [4],
a single model or a model with only one branch is usually
subject to computational and representational limitations.
To alleviate this problem, Zhang et al. [42] proposed a light-
weight ensemble method to improve the generalization of
negative correlation learning for regression problems. Qin et
al. [31] suggested a difficulty-aware image SR method that
use a dual-way network to separately recover easy image
regions and hard ones. Li et al. [23] applied a learning-based
adapting method to ensemble the outputs from multiple
models, which can exploit the information among successive
video frames. Inspired by the above methods that capture
different features, structures or sub-components in an image
with separate models or branches, we make use of a slicing
network to discriminately process each region within a depth
map by its depth range in the scenario of DSR.

2.3 Generalization Ability

Many techniques have been explored to improve the general-
ization ability of network for image restoration. Kim et al.
[21] and Gao et al. [9] both proposed a joint-training strategy



Figure 1: Overview of the network architecture. SCM is to realize DSR with different downscaling factors
in an unified model, which allows to finely-grained control the depth restoration results by using a scale
parameter, while DSM aims to learn a set of slicing branches in a divide-and-conquer manner, parameterized
by a distance-aware weighting scheme to adaptively aggregate all the branches in the ensemble.

to learn a single image SR network with different downsam-
pling inputs together. Based on [21], Lim et al. [27] used a
single main branch as backbone and further applied three
separate scale-specific processing modules (×2, ×3, ×4) after
the backbone to improve the network generalization. How-
ever, these methods are still subject to insufficient network
representation, leading to a relatively low restoration accura-
cy. To realize the regulation and control for image restoration,
Wang et al. [38] performed image interpolation in the pa-
rameter space for continuous imagery effect transition. Hu
et al. [16] and Jo et al. [19] advocated to generate dynamic
upsampling filters/kernels according to different upscaling
factors for image and video SR respectively. However, these
methods still need to be further improved with regard to the
fine-grained control of image restoration.

3 PROPOSED METHOD

Fig. 1 outlines the whole architecture and detailed config-
uration of our proposed deep controllable slicing network.
Let 𝐷𝐿𝑅 and 𝛾𝑖𝑛 be the LR depth map (interpolated to the
desired output size) and the upscaling factor as input, respec-
tively. The goal is to predict the corresponding super-resolved
depth map 𝐷𝑆𝑅. Note that color information can bring im-
provement for DSR, but may introduce texture-copying and
depth bleeding artifacts because of the depth-color inconsis-
tency. Therefore, our method focuses on singe depth map
SR, and achieves superior performance to other color-guided
methods.

The proposed model can be divided into three compo-
nents: scale-controllable module (SCM), depth slicing module
(DSM) and the final refinement. SCM consists of three branch-
es, i.e., generalized branch (GB, our backbone), specialized
branch (SB), and fusion branch (FB). The shallow features
𝐹𝑑 extracted from 𝐷𝐿𝑅 are sent into both GB and SB, and

Figure 3: Down- and up-projection units. ‘Decon-
v’ and ‘Conv’ represent de-convolution and convo-
lution layers, which can be regarded as upsampling
and downsampling operators to transform features
between HR and LR spatial domains, respectively.

𝛾𝑖𝑛 is additionally fed into SB to represent the desired scale.
FB aggregates features from SB and GB in a multi-scale
fashion, and then outputs the intermediate feature map 𝐹𝑐.
In DSM, 𝐹𝑐 is spatially split into 𝑛 regions according to dif-
ferent depth ranges, and is sent into the corresponding slicing
branches. Then, the intermediate depth map 𝐷𝑠 is obtained
by weighted-averaging the outputs from slicing branches. Fi-
nally, 𝐷𝑠 is refined by a simple residual structure to output
the final super-resolved depth map 𝐷𝑆𝑅.

3.1 Scale-Controllable Module

To realize the fine-grained control of depth restoration with
arbitrary upscaling factors, we propose a scale-controllable
module (SCM) to learn a set of controllable features. As
shown in Fig. 2, GB can be regarded as our backbone and
contains 𝑀 stacked generalized blocks, while SB includes 𝑀
stacked specialized blocks together with 𝑀 successive fully
connected blocks. FB contains 𝑀 fusion blocks to aggregate
the output features from generalized blocks, specialized blocks
and fully connected blocks at different stages in a multi-scale
fashion.



Figure 2: Network architecture of our SCM. GB aims to extract the common features from the input, while
SB takes the given scale parameter and its corresponding LR depth map as input, then generates specialized
features to adaptively tune the features of GB through FB in a linear fusion fashion, e.g., 𝑓𝑚 = 𝑔𝑚 + 𝛾𝑚 · 𝑠𝑚.

Each generalized block is built upon a down-projection
unit and an up-projection unit [14], as shown in Fig. 3. It
can effectively improve the feature representations at depth
boundaries through iterative projecting HR representations
to LR spatial domain and then mapping the reconstruction
errors back into the HR domain. The specialized block is a
simple residual architecture consisting of four convolution
layers, each followed by a ReLU activation.

The initial depth feature 𝐹𝑑 is extracted from 𝐷𝐿𝑅 through
a series of shallow feature extraction operations such as
convolution. Then, 𝐹𝑑 is sent into GB and SB, and we get:

𝑔𝑚 = 𝒢𝑚
𝑔𝑏(𝑔

𝑚−1), 𝑔0 = 𝐹𝑑, (1)

𝑠𝑚 = 𝒢𝑚
𝑠𝑏(𝑠

𝑚−1), 𝑠0 = 𝐹𝑑, (2)

where 𝒢𝑚
𝑔𝑏(·) and 𝒢𝑚

𝑠𝑏(·) denote the 𝑚-th generalized block
and specialized block respectively. 𝑔𝑚 and 𝑠𝑚 denote the
output features of 𝑚-th generalized block and specialized
block respectively.

We introduce 𝛾𝑖𝑛 to explicity control the scale of the
depth feature, and it may further lead to adaptive fusion
of the outputs of generalized blocks and specialized blocks.
Specifically, we introduce fully connected block to map an
input scale hyper-parameter 𝛾𝑖𝑛 into different vectors. Each
vector has different fusion coefficients for the multi-channel
features of generalized blocks and specialized blocks. We
use three fully connected layers to implement this mapping
operation:

𝛾𝑚 = 𝒢𝑚
𝑓𝑐(𝛾

𝑚−1), 𝛾0 = 𝛾𝑖𝑛, (3)

where 𝒢𝑚
𝑓𝑐(·) denotes the 𝑚-th fully connected block and 𝛾𝑚

is the fusion vector of 𝑚-th stage. Then, we introduce the
linear fusion operation to selectively treat the output features
at every feature extraction stage, which is defined as follows:

𝑓𝑚 = 𝑔𝑚 + 𝛾𝑚 · 𝑠𝑚, (4)

where each value in 𝛾𝑚 is multiplied on the corresponding
channel of 𝑠𝑚. Finally, all the outputs from fusion blocks
are concatenated and filtered by an 3 × 3 convolution to
output the feature map 𝐹𝑐. Through varying the value of 𝛾𝑖𝑛,
the fine-grained control of depth restoration with arbitrary
magnification can be realized.

To obtain the generalized features and specialized features
discriminatively from GB and SB, the whole network is
learned with a two-stage training strategy based on different
optimization objectives. More training details are described
in Sec. 3.3.

3.2 Depth Slicing Module

We formulate our depth slicing module (DSM) to discrimi-
nately mitigate complex degradation at region-level. DSM
consists of a set of slicing branches and a distance-aware
weighting CNN, in which each has a same network architec-
ture with the specialized block, i.e., a simple residual block.
Each slicing branch 𝑆𝑛 that specifies some depth range tend-
s to yield accurate depth estimation 𝐷𝑆𝑛 from the shared
depth feature 𝐹𝑐 on the corresponding depth region:

𝐷𝑆𝑛 = 𝒢𝑛
𝑠𝑙𝑖𝑐𝑒(𝐹𝑐), (5)

where 𝒢𝑛
𝑠𝑙𝑖𝑐𝑒(·) denotes the 𝑛-th slicing block. To achieve ac-

curate regression, we also propose a distance-aware weighting
scheme to learn the fusion weights for adaptively aggregating
all the slicing branches in an ensemble. The output of the
weighting CNN is a set of weighting masks {𝑊𝑛, 𝑛 ∈ [1, 𝑁 ]},
which are defined as follows:

[𝑊1,𝑊2, ...,𝑊𝑛−1,𝑊𝑛] = 𝒢𝑤(𝐹𝑐), (6)

where 𝒢𝑤(·) denotes the weighting CNN. The weighting mask
𝑊𝑛 consists of 0 and 1, where 1 represents that this pix-
el belongs to corresponding depth ranges. Our proposed
distance-aware weighting scheme is automatically aware of



multiple depth regions according to different depth ranges
(distance within 𝐷𝑆𝑛), and assists each slicing branch to
recover the depth values focusing on its corresponding depth
region. Thus, the outputs of all the slicing branches are ag-
gregated with the estimated weighting masks, and generate
a accurate recovered depth map 𝐷𝑆 on all the depth regions:

𝐷𝑆 =

∑︀𝑛
𝑖 𝐷𝑆𝑖 *𝑊𝑖∑︀𝑛

𝑖 𝑊𝑖
, (7)

where * denotes the element-wise multiplication.
When fusing slicing branches, the intermediate depth map

𝐷𝑆 may demonstrate some errors at the junction of differ-
ent depth regions. Therefore, we add a refinement module
𝒢𝑟𝑒𝑓𝑖𝑛𝑒(·) at the end of the DSM module to further enhance
the intermediate depth map. The final super-resolved depth
map 𝐷𝑆𝑅 is reconstructed from 𝐷𝑆 by using a sample residu-
al block with three 3×3 convolution layers interlaced by two
ReLU activations.

Note that, by dividing the DSR task into multiple sub-
problems applied on each specific depth range, our method
shares the essence of ensemble strategy and yields more robust
estimations than a single DSR network.

3.3 Training Algorithm

Training Data Generation. Given that we have a collec-
tion of LR-HR paired depth maps, which contain HR depth
maps 𝐷𝐻𝑅 ∈ 𝒟𝐻𝑅 and the corresponding LR depth maps
𝐷𝐿𝑅 ∈ 𝒟𝐿𝑅 (×2, ×4, ×8, ×16 cases downsampled from HR
depth maps). We produce the ground truth depth regions
𝐷𝑔𝑡

𝑆𝑛
∈ 𝒟𝑆 by slicing the corresponding HR depth map 𝐷𝐻𝑅

into 𝑁 regions with equal depth range according to the max-
imum distance. Meanwhile, we generate the ground truth
weighting masks 𝑊 𝑔𝑡

𝑛 ∈ 𝒲 by setting the non-zero values of
the corresponding sliced depth map 𝐷𝑔𝑡

𝑆𝑛
as one to form a

binary map.
Loss Functions. All the slicing branches are trained in a

supervised manner such that each one becomes accurate and
specialized on a specific depth range. The loss function for
training the slicing branches can be formulated as follows:

ℒ𝑆 =

𝑛∑︁
𝑖

||𝐷𝑆𝑖 −𝐷𝑔𝑡
𝑆𝑖
||1, (8)

The weighting CNN is also trained in a supervised manner,
and its loss function is engaged to enforce the regions of
concern with regard to a specific depth range, which is defined
as

ℒ𝑊 =

𝑛∑︁
𝑖

||𝑊𝑖 −𝑊 𝑔𝑡
𝑖 ||1, (9)

For the final depth map reconstruction, we directly measure
the pixel-wise difference between the predicted depth map
𝐷𝑆𝑅 and its corresponding ground truth 𝐷𝐻𝑅 as a task loss
to encourage an accurate regression:

ℒ𝑇 = ||𝐷𝑆𝑅 −𝐷𝐻𝑅||1, (10)

Combining the above three losses, then we have the overall
loss for our model:

ℒ = ℒ𝑇 + 𝜆1ℒ𝑆 + 𝜆2ℒ𝑊 , (11)

where 𝜆1 and 𝜆2 are the trade-off parameters.
Training Strategy. We realize the fine-grained control-

lable feature learning by a two-stage training strategy. For
the first stage, we fix all vectors {𝛾𝑚,𝑚 ∈ [1,𝑀 ]} as all-one
vectors and remove the fully connected block from SB. We
train the rest modules together on the dataset with all the
downsampling inputs. Note that, this stage aims to learn the
generalization features from diverse degraded depth maps.
For the second stage, we fix the parameters of GB and ad-
d the fully connected blocks back to SB. We set the scale
factor 𝛾𝑖𝑛 as a designated value that dynamically matches
the type of input depth map, i.e., 𝛾𝑖𝑛 can be set as 1, 2, 3,
4 corresponding to ×2, ×4, ×8, and ×16 LR depth maps,
respectively. The network learns the specialized features by
updating the parameters of SB and DSM. At testing phase,
the scale factor 𝛾𝑖𝑛 can be set at any values (from 1 to 4) to
tune the restoration performance without knowing the real
upscaling factors beforehand, which is very practical for the
DSR task tested on real-world inputs.

4 EXPERIMENTAL RESULTS

To generate training data, we use 38 depth maps (6, 2, 21,
9 depth maps from 2001 [2], 2003 [35], 2006 [15] and 2014
[33] datasets, respectively) from Middlebury dataset. To test
the performance, we conducted experiments on Middlebury
2005 [34] dataset (6 standard test depth maps, i.e., Art,
Books, Moebius, Dolls, Laundry, Reindeer), and evaluate
the generalization on MPI Sintel dataset (5 depth frames,
i.e., Ambush 2-15, Ambush 4-12, Ambush 5-41, Twmple 3-
23 ) and TofMark dataset [7] (3 real-world depth maps, i.e.,
Books, Shark, Devil, captured by ToF depth sensors). Anoth-
er training and testing dataset is NYU v2 RGB-D dataset
[36] captured from Kinect. Following the common splitting
method, we use the first 1000 images of the NYU dataset
as training data, and evaluate on the last 449 images. We
randomly extract 15000+ depth patches of a fixed size of
256×256 from HR depth maps and augment the training
dataset by 180-degree-rotation. The corresponding LR depth
patches are the squared size of 128, 64, 32, and 16 according to
2, 4, 8, and 16 scale factors respectively. The metric of Mean
Absolute Difference (MAD) is used for objective evaluation.
During training, we set the number of generalized/specialized
blocks as 𝑀 = 4 and the number of slicing branches as 𝑁 = 5.
We set the trade-off parameters as 𝜆1 = 0.2 and 𝜆2 = 0.2
after trials. For optimization, we used Adam optimizer with
momentum = 0.9, 𝛽1 = 0.9, 𝛽2 = 0.99 and 𝜖 = 10−8. The ini-
tial learning rate is set to 0.0001 and decreased by multipling
by 0.1 for every 50 epochs. We implemented our models by
PyTorch framework with GPU acceleration.



Table 1: Quantitative depth upsampling results on Middlebury dataset. (lower MADs, better performance)

Art Books Dolls Laundry Moebius Reindeer

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 0.48 0.97 1.85 3.59 0.13 0.29 0.59 1.15 0.20 0.36 0.66 1.18 0.28 0.54 1.04 1.95 0.13 0.30 0.59 1.13 0.30 0.55 0.99 1.88

FGI [26] 0.70 1.29 2.41 4.51 0.43 0.74 1.16 1.91 0.54 0.93 1.44 2.12 0.51 0.91 1.59 2.68 0.42 0.72 1.13 1.81 0.50 0.87 1.58 2.72

TGV [6] 0.45 0.65 1.17 2.30 0.18 0.27 0.42 0.82 0.21 0.33 0.70 2.20 0.31 0.55 1.22 3.37 0.18 0.29 0.49 0.90 0.32 0.49 1.03 3.05

DJF [25] 0.12 0.40 1.07 2.78 0.05 0.16 0.45 1.00 0.06 0.20 0.49 0.99 0.07 0.28 0.71 1.67 0.06 0.18 0.46 1.02 0.07 0.23 0.60 1.36

MSG [17] - 0.46 0.76 1.53 - 0.15 0.41 0.76 - 0.25 0.51 0.87 - 0.30 0.46 1.12 - 0.21 0.43 0.76 - 0.31 0.52 0.99

DGDIE [12] 0.20 0.48 1.20 2.44 0.14 0.30 0.58 1.02 0.16 0.34 0.63 0.93 0.15 0.35 0.86 1.56 0.14 0.28 0.58 0.98 0.16 0.35 0.73 1.29

DEIN [41] 0.23 0.40 0.64 1.34 0.12 0.22 0.37 0.78 0.12 0.22 0.38 0.73 0.13 0.23 0.36 0.81 0.11 0.20 0.35 0.73 0.15 0.26 0.40 0.80

CCFN [40] - 0.43 0.72 1.50 - 0.17 0.36 0.69 - 0.25 0.46 0.75 - 0.24 0.41 0.71 - 0.23 0.39 0.73 - 0.29 0.46 0.95

GSRPT [3] 0.22 0.48 0.74 1.48 0.11 0.21 0.38 0.76 0.13 0.28 0.48 0.79 0.12 0.33 0.56 1.24 0.12 0.24 0.49 0.80 0.14 0.31 0.61 1.07

DSR N [39] 0.12 0.25 0.61 1.80 0.04 0.11 0.28 0.69 0.06 0.14 0.33 0.73 0.06 0.15 0.43 1.24 0.05 0.13 0.29 0.67 0.07 0.15 0.35 0.92

Ours 0.10 0.23 0.58 1.30 0.06 0.09 0.26 0.63 0.07 0.11 0.31 0.69 0.06 0.14 0.34 0.77 0.06 0.12 0.27 0.64 0.07 0.14 0.33 0.79

Figure 4: Visual comparison of ×8 upsampling results on Art, Dolls: (a) GT; (b) LR; (c) Bicubic, (d) FGI
[26], (e) DJF [25], (f) DGDIE [12], (g) DEIN [41], (h) GSRPT [3], (i) DSR N [39], (j) Ours, (k) GT.

Figure 5: Visual comparison for recovered depth maps from ×8 downsampling on NYU v2 dataset. (a) GT,
(b) JBU [22]. (c) DJF [25], (d) SVLRM [28], (e) Ours.

Table 2: Quantitative depth upsampling results on
real NYU v2 dataset.

Method JBU [22] DJF [25] DGDIE [12] GbFT [1] PAC [37] SVLRM [28] DKN [20] Ours

×4 4.07 3.54 1.56 3.35 2.39 1.74 1.62 1.33

×8 8.29 6.20 2.99 5.73 4.59 5.59 3.26 2.87

×16 13.35 10.21 5.24 9.01 8.09 7.23 6.51 5.12

4.1 Performance Comparison

Depth SR under Noiseless Cases: To validate the supe-
riority of our method, we first evaluate noiseless cases on
Middlebury and NYU datasets, respectively.

Table 3: Quantitative depth upsampling results noisy
Milddleburry dataset.(lower MADs, better perfor-
mance)

Art Books Dolls Laundry Moebius Reindeer

×8 ×16 ×8 ×16 ×8 ×16 ×8 ×16 ×8 ×16 ×8 ×16

TGV [6] 2.76 6.87 1.49 2.74 1.75 3.71 1.89 4.16 1.72 3.99 1.75 4.40

MSG [17] 1.57 2.98 1.18 1.48 1.12 1.78 1.03 1.89 1.13 1.76 1.12 1.87

DGDIE [12] 1.84 3.34 1.29 2.04 1.39 2.05 1.73 2.67 1.37 2.16 1.33 2.19

DEIN [41] 2.44 4.24 1.44 2.38 1.55 2.45 1.77 3.20 1.64 3.29 1.46 3.87

GSRPT [3] 1.33 2.47 0.87 1.37 1.26 2.03 1.24 1.86 1.03 1.68 1.04 1.70

DSR N [39] 1.60 3.25 1.21 1.98 1.33 2.16 1.44 2.64 1.24 2.16 1.29 2.35

Ours 1.20 2.13 0.96 1.33 1.11 2.06 1.19 1.82 1.03 1.61 0.91 1.82

For Middlebury dataset, we compare with DJF [25], MSG
[17], DGDIE [12], DEIN [41], CCFN [40], GSRPT [3], D-
SR N [39], which are learning-based methods based on color



Figure 6: Visual comparison of ×8 upsampling and
denoising results on Books, Reindeer : (a) Noisy; (b)
DGDIE [12], (c) DSR N [39], (d) Ours.

guidance. Table 1 presents the ×2, ×4, ×8 and ×16 upsam-
pling performance of different methods. Our network almost
obtains the best objective scores in all cases, especially for
the ×8 and ×16 cases which are more difficult to restore.
As shown in Fig. 4, obviously, our method can recover more
pleasing structures and depth details, e.g., less jaggy artifacts
around the stick in Art, more sharper and cleaner results on
the toy’s head in Dolls. Note that our unified model performs
better than these color-guided and scale-specific models that
are trained independently on each scale.

Additionally, we evaluate on NYU dataset to demonstrate
the effectiveness of our method. These state-of-the-art meth-
ods (JBU [22], DJF [25], DGDIE [12], GbFT [1], PAC [37],
SVLRM [28], DKN [20] ) that are also evaluated on NYU
dataset are compared. As illustrated in Table 2, our method
obtains the best objective results for all the upsampling cases.
Fig. 5 further shows the visual performance under the ×8
case. Focusing on the highlighted regions, we achieve the
sharpest and clearest results.
Depth SR under Noisy Cases: Following [29], to simu-
late the acquisition process of a ToF depth sensor, we also
add depth-dependent Gaussian noise to the training data,
and then downsample the polluted depth maps at ×8 and
×16 scales. As shown in Table 3, our method achieves the
best objective performance. We further provide perceptual
comparisons in Fig. 6. The results of other methods present
excessive cotton-like blurring, while our method can remove
the noise and keep the sharpest depth boundaries on each
depth range thanks to our distance-aware slicing network.

4.2 Evaluation on Generalization

We validate the generalization ability of our method on MPI
Sintel dataset, the degraded depth inputs with unseen scale
factors, and real ToFMark dataset.
MPI Sintel Dataset As demonstrated in Table 4, we almost
achieve the best results on each case. Fig. 7 shows the visual
comparison on Ambush 4-12. We obtain more accurate and
clear depth details in the recovered results.

Table 4: Generalization on MPI Sintel datasets.

Ambush 2-15 Ambush 4-12 Ambush 5-41 Twmple 3-23

×8 ×16 ×8 ×16 ×8 ×16 ×8 ×16

MSG [17] 0.51 1.12 1.10 1.82 1.36 2.01 0.82 1.78

DGDIE [12] 0.65 1.24 1.26 2.23 1.79 3.10 1.01 1.90

DEIN [41] 0.47 1.08 1.12 1.76 1.69 2.32 0.89 1.82

GSRPT [3] 0.62 1.44 1.32 2.45 1.98 3.46 1.19 2.07

DSR N [39] 0.30 0.85 0.88 2.21 0.98 2.07 0.59 1.35

Ours 0.42 0.64 0.82 1.62 0.77 1.88 0.81 1.30

Figure 7: Visualization on Ambush 4-12 from MPI
(×8): (a) GT, (b) GSRPT, (c) DSR N, (d) Ours.

Figure 8: Generalization on unseen upsampling s-
cales in training data.

Figure 10: Visualization on ToFMark: (a) GT; (b)
DGDIE[12], (c)GSRPT[3], (d) DSR N[39];(e) Ours.

Inputs with Unseen Scales We also provide the visual-
ization results which are tested on the inputs with unseen
scale factors. Fig. 8 lists paired input and output of different
scales. Our model also achieves high perceptual quality which
validates our high generalization ability due to the proposed
scale-controllable module.
ToFMark Dataset Different from other methods that need
to synthesize the suitable training datasets for testing on
ToFMark or revise the inputs from ToFMark to adapt to



Figure 9: Visual comparison of ×8 (𝛾𝑖𝑛 = 3) upsampling results at different 𝛾𝑖𝑛 vaules.

Table 5: Generalization on real ToFMark dataset.

Method MSG [17] DEIN[41] DGDIE [12] GSRPT [3] DSR N [39] Ours

Books 12.26 12.78 12.31 13.21 11.15 11.03

Shark 14.11 15.11 14.06 15.03 13.26 12.08

Devil 12.45 14.25 9.66 12.27 9.54 9.33

Figure 11: Visualization of the weighting masks.

Table 6: Ablation Study on ×8 downsampling cases.

Method
MAD Values (the lower the better )

Art Books Dolls Laundry Moebius Reindeer

w/o 𝛾𝑖𝑛 0.591 0.280 0.317 0.365 0.278 0.340

Ours 0.578 0.263 0.310 0.342 0.272 0.334

N=0 0.607 0.279 0.322 0.370 0.288 0.355

N=3 0.588 0.270 0.307 0.356 0.275 0.350

N=5 (Ours) 0.578 0.263 0.310 0.342 0.272 0.334

N=5 (w/o Weight) 0.619 0.286 0.327 0.403 0.299 0.363

N=7 0.563 0.247 0.302 0.344 0.239 0.322

the well-trained models, we directly send the depth maps
into our model to acquire the results. As shown in Table
5 and Fig. 10, through controlling the scale parameter, we
achieve the best performance, which demonstrates our better
generalization ability on real data.

4.3 Ablation Study

Scale-Controllable Module (SCM). Previous experiments
have already validated our SCM on the recovery of designated
scales and the generalization of unseen datasets or scales. As
shown in Table 6, we further demonstrates the effectiveness
of SB according to different training stages (‘w/o 𝛾𝑖𝑛’ for the
first training stage, while ‘Ours’ for the complete training)
through ablation study. Without the control of 𝛾𝑖𝑛, the per-
formance decreases a lot. Besides, we also provide perceptual
comparisons in Fig. 9 to illustrate the fine-grained control of
SCM. For the same ×8 LR input, we change 𝛾𝑖𝑛 from 0 to 5

with an interval of 0.5 to obtain different visual results. Our
network presents a mild performance variation, and achieves
the best performance at 𝛾𝑖𝑛 = 3.

Depth Slicing Module (DSM). We investigate our
DSM via ablation study on two aspects, i.e., the distance-
aware weighting scheme and the number of slicing branches.
As listed in Table 6, removing the whole DSM module (‘N
= 0’) or the weighting scheme (‘N = 5 (w/o Weight)’) will
decrease the performance a lot compared to our final configu-
ration (’N =5 (Ours)’). Meanwhile, as the number of slicing
branches 𝑁 increases, the performance improves obviously,
but saturates at 𝑁 = 5 (our final choice). In addition, we
visualize the probabilistic weighting masks to further vali-
date the capability of our distance-aware weighting scheme as
shown in Fig. 11. Given a test input, the proposed scheme can
automatically distinguish different depth regions depending
on the depth range, and generate the corresponding weighting
mask on each specific depth range.

5 CONCLUSION

We propose a novel distance-aware deep controllable slicing
network, which learns a set of slicing branches parameterized
by a distance-aware weighting scheme to adaptively aggre-
gate all the branches in an ensemble. In addition, a scale-
controllable module is designed to realize the fine-grained
control of depth restoration objectives. Comprehensive ex-
periments demonstrate the superiority of our model.
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