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Existing monocular depth estimation methods are unsatisfactory due to the inaccurate inference of depth 

details and the loss of spatial information. In this paper, we present a novel detail-preserving network 

(DPNet), i.e., a dual-branch network architecture that fully addresses the above problems and facilitates 

the depth map inference. Specifically, in contextual branch (CB), we propose an effective and efficient 

nonlocal spatial attention module by introducing non-local filtering strategy to explicitly exploit the pixel 

relationship in spatial domain, which can bring significant promotion on depth details inference. Mean- 

while, we design a spatial branch (SB) to preserve the spatial information and generate high-resolution 

features from input color image. A refinement module (RM) is then proposed to fuse the heterogeneous 

features from both spatial and contextual branches to obtain a high quality depth map. Experimental 

results show that the proposed method outperforms SOTA methods on benchmark RGB-D datasets. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

t  

d  

p  

i  

t  

e  

c

 

c  

H  

i  

i  

R  

m  

t  

r  

i  

s  

o  

s

 

t  

a  

a  

s  

w  

t  

n  

i  

l  

r  

m  

t  

a  

t  

e  

c  

m  

b

 

s  

u  

c  

h

0

. Introduction 

Depth estimation is one of the most widely studied topics in

he field of computer vision. An accurate depth map has been

emonstrated to provide essential 3D information for many com-

uter vision tasks, including semantic labeling [1,2] , robotics nav-

gation [3] , 3D reconstruction [4,5] and so on. While high quality

exture information can be easily captured by popular color cam-

ras, the acquisition of depth information [6] is still remaining a

hallenging task in real conditions. 

Hence, depth estimation from single camera becomes alternate

hoice by exploiting monocular cues from a given color image.

owever, for lacking geometry constraints in color images, estimat-

ng depth from a generic scene is an ill-posed problem due to the

nherent ambiguity of mapping the color measurement into depth.

ecently, convolutional neural networks (CNNs) are widely used for

onocular depth estimation [7] . To achieve accurate depth estima-

ion, most methods resort to enhance the ability of feature rep-

esentations for pixel-level regression, e.g., exploiting multi-scale

nformation [8,9] or long-range dependencies [10] . However, de-

pite that overall depth levels are reliably estimated, the recovery

f depth details, e.g., object boundaries and fine structures, is un-

atisfactory, as shown in Fig. 1 . 
∗ Corresponding author. 
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Intuitively, a color image and the associated depth map are

he photometric and geometrical representation of the same scene,

nd have strong structural correlation. Pixels with similar appear-

nces have more chances of belonging to the same object, and

hould have close depth values. Previous graphic model-based

orks [11,12] have achieved superior performance on depth de-

ail recovery by fully exploiting such correlation. For example, the

on-local image model [12] is constructed by pair-wise similar-

ty of non-local pixels computed from the associated color simi-

arities. Recently, there also appear many ideas that leverage the

elationship between channels or neighboring pixels in a feature

ap. For example, some methods learn the affinity matrix to cap-

ure the nonlocal similarity [13–15] , while others focus on self-

ttention mechanism to capture feature interdependencies in spa-

ial and channel dimensions [16–18] . As mentioned above, consid-

ring the nonlocal correlation between pixels could bring signifi-

ant promotion on detail recovery and potentially help the depth

ap inference, which has been mostly ignored by existing CNN-

ased depth estimation methods. 

Meanwhile, the nonlocal correlation is computationally inten-

ive, since the pairwise similarity computation is usually applied

nder the global view. For example, [12] takes spatial distance and

olor intensity difference in multiple gaussian kernels to compute

he pair-wise similarity within an approximate global scale, while

19] uses matrix multiplication to apply the pairwise computation

n the whole image domain. This motivates us to design an effi-

ient way to implement it under the CNN architecture. 

https://doi.org/10.1016/j.patcog.2020.107578
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107578&domain=pdf
mailto:yexch@tju.edu.cn
https://doi.org/10.1016/j.patcog.2020.107578


2 X. Ye, S. Chen and R. Xu / Pattern Recognition 109 (2021) 107578 

Fig. 1. A depth estimation example. (a) Color image; (b) Lee et al. [20] (c) Ours w/o spatial branch and refinement module; (d) Ours w/o attention module; (e) Ours; (f) 

Ground truth. 

Fig. 2. Two examples to show inferred depths and activation maps (output from nonlocal correlation) from the marked color patches extracted within nonlocal neighbor- 

hoods. 
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Besides, almost all current CNNs need repeated combinations

of pooling and downsampling that progressively decrease the res-

olution of feature map, which leads to low resolution and blurry

results due to the loss of spatial information. Some methods

[10,21] use conditional random field (CRF) as a separate post-

processing. Other advanced methods recast CRF model as a loss

function or a part of the network, and train them together [22–24] .

The rest works focus on either designing an up-projection block

[25] or using auxiliary information (e.g., depth gradient) [24,26] to

obtain a high-resolution (HR) depth map. Different from these

methods, we exploit a dual-branch architecture to separately con-

sider the spatial and contextual information, and then design a fu-

sion strategy to combine theses features. 

In this paper, we simultaneously address the above problems,

and propose a novel detail-preserving network (DPNet), i.e., a dual-

branch network architecture that fully addresses the above prob-

lems and facilitates the depth map inference, as shown in Fig. 4 .

Specifically, in contextual branch (CB), we propose a nonlocal spa-

tial attention module by introducing non-local filtering strategy to

explicitly exploit the non-local correlation in spatial domain to fa-

cilitate depth details inference. A fast strategy by replacing the

global cross correlation with a nonlocal affinity is proposed to re-

duce the implementation complexity without sacrificing the esti-

mation performance. Combining with a channel attention module,

we apply the dual-attention module on top of the backbone in

contextual branch to model the high-level nonlocal dependencies.

Meanwhile, we also design a spatial branch (SB) to retain abundant

spatial details and generate HR features from input color image.

A refinement module (RM) is proposed to fuse the heterogeneous

features from both spatial and contextual branches to obtain a high
 a  
uality depth map. Our main contributions can be summarized as

ollows: 

1) A dual-branch depth estimation network architecture that sepa-

rately captures low-level and high-level feature representations,

which fully addresses the problems of spatial information loss

and inaccuracy inference on depth details. 

2) A refinement module is proposed to fuse different levels of fea-

tures from both the branches and obtain the final high quality

depth map. 

3) A nonlocal spatial attention module is proposed to explicitly

exploit the nonlocal correlation in spatial domain. The module

structure is designed to reduce the computational complexity

without sacrificing the overall prediction accuracy, making it a

valuable way to be implemented in faster depth estimation. 

We achieve new state-of-the-art results on the popular bench-

ark NYU v2 dataset. Note that, we train our network on a small

abeled training subset that containing 795 image pairs only, but

btain lowest values 0.474 and 0.081 under the Rmse (lin) and

mse (log) metric, which improves the performance by 17% and

2% than the second best method (0.571, 0.193), respectively. 

. Related work 

.1. Monocular depth estimation 

Previous methods mainly focus on the graphical models with

and-crafted geometry priors [27] or the non-parametric depth

ransfer techniques [28,29] . Recently, CNNs have been extensively

pplied into the depth estimation task. One simple way is to use
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Fig. 3. Comparison of different nonlocal correlation structures to exploit feature similarities in (a) [34] , (b) [19] , and (c) Our proposed nonlocal spatial attention module. 

“LocalMul” is defined as the inner product of feature vectors between centering pixel p and its neighbors q in a squared region with the size 2 k + 1 . The size of the reshaped 

output feature map from “LocalMul” is h × w × c(2 k + 1) 2 . “MatMul” is defined as a global cross correlation by multiplying between the reshaped feature map x and its 

transpose version. 
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uper-pixel based segmentation to divide the whole image into

mall homogenous regions, and learn the depth for each region us-

ng deep networks [21,23] . 

To achieve precise depth estimation, it is necessary to enhance

he ability of feature representations for pixel-level regression.

ome methods aim at exploiting multi-scale schemes to capture

nformation at different scales simultaneously, such as using multi-

cale inputs [8,30] , pyramid dilated convolutions [9] , the encoder-

ecoder structures with long connections (U-net [31] ) [22,32] , or

he recurrent models [33] . To capture long-range context, horizon-

al or vertical convolutions [10] and pairwise similarity learning

34] have been proposed to explicitly model the relationship be-

ween pixels in a given support or direction. 

To improve the image quality of the predicted depth map, some

ethods [10,21] use conditional random field (CRF) as a sepa-

ate post-processing. Other advanced methods recast CRF model

s a loss function or a part of the network, and train them to-

ether [22–24] . Lee et al. [20] used the frequency domain analysis

o enhance the dataset, and re-designed a depth-balanced loss to

chieve better estimation in closer areas. The rest works focus on

ither designing an up-projection block [25] or using auxiliary in-

ormation (e.g., depth gradient) [24,26] to obtain a HR depth map. 

Recently, some methods use binocular images as supervision

o train the monocular depth estimation network. Zhao et al.

35] proposed an unsupervised learning method that simultane-

usly utilizes labels in the synthetic data and epipolar specific

eometric information from the real data for better monocular

epth estimation. Chen et al. [36] studied a SceneNet towards

cene understanding to perform both semantic segmentation and

epth estimation, which is a cross-modal network model integrat-

ng both depth and segmentation modalities. Pilzer et al. [37] pro-

osed to predict the synthetic image and disparity opposite to the

nput image and re-synthesize the input image to build the cy-

le inconsistency between the original and the reconstructed in-

ut image. Then they utilized a refinement network to reduce

he inconsistency and refine the final disparity. Wong and Soatto

38] introduced an adaptive regularization to constrain the incor-

ect penalty of the smoothness term on object boundaries. Pus-
 i  
as et al. [39] proposed a unified deep model consisting of a dual

enerative adversarial networks (GAN) and a structured conditional

andom field (CRF). The dual GAN is used to exploit the relation-

hip between stereo images and the CRF provides a structured con-

ection between the discriminator and the generator. 

.2. Nonlocal correlation 

Previous filtering [40,41] or global optimization techniques

11,12,42] on the task of depth recovery have focused on depth de-

ail preservation by fully exploiting nonlocal correlation in a nonlo-

al neighborhood. Recently, there appear many ideas that leverage

he relationship between channels or neighboring pixels under the

NN architecture. 

The first category is affinity learning , in which an affinity is a

eneric matrix that determines pixel similarity in image or fea-

ure space calculated from low-level coherence of appearance or

emantic-level similarities in various applications [41,43,44] . Re-

ent techniques resort to learning-based methods [13–15,34] to

odel the spatial relationship between neighboring pixels instead

f hand-crafted design. For example, Liu et al. [14] proposed spa-

ial propagation networks for learning the affinity matrix, which

odels dense, global pairwise relationships of an image. Ahn and

wak [13] proposed an AffinityNet that predicts semantic affinity

etween a pair of adjacent image coordinates. Gan et al. [34] mod-

led the relationships of different image locations with an affinity

ayer and combine absolute and relative features in an end-to-end

etwork. 

Besides, self-attention mechanism originates from the natural

anguage processing field, and has recently been widely used in

omputer vision to model internal representations by inferring an

ttention map from a group of feature map. Hu et al. [18] pro-

osed the Squeeze-and-Excitation block, which adaptively recali-

rates channel-wise feature responses by explicitly modelling in-

erdependencies. Wang et al. [17] constructed the spatial attention-

ware module based on the encoder-decoder structure. Woo et al.

16] proposed a convolutional block attention module (CBAM) to

nfer attention maps along channel and spatial dimensions sepa-
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Fig. 4. The proposed deep architecture to estimate depth from monocular RGB image. s-DConv denotes dilated convolution with dilation rate s . 
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rately. Another self-attention mechanism can be categorized as lin-

ear algebra based method. Vaswani et al. [45] computed the re-

sponse at a position in a 1D sequence by attending to all positions

and taking their weighted average in an embedding space. Wang

et al. [19] extended the self-attention in 1D translation [45] to a

more general 2D image processing problems. 

3. Motivation 

Indeed, existing methods have already exploited global and

multi-scale information to some extent by using some enhanced

feature representations to estimate depth map reliably. However,

depth details, e.g., object boundaries and tiny objects, cannot be

predicted by only addressing the overall estimation of depth levels.

In contrast, traditional non-local methods, such as [12] and [42] ,

are able to simultaneously achieve global sensing and granular spa-

tial resolution by enlarging effective filtering support and attenuat-

ing uncorrelated features, i.e., via similarity search. The motivation

is to facilitate the prediction of fine structures by introducing non-

local filtering strategy to explicitly exploit the pixel relationship in

the contextual branch. As shown in Fig. 2 , the activation maps ob-

tained from our nonlocal attention module also verifies the idea.

Pixels that have similar color appearances with the centering pixel

are activated, which are likely to belong to similar depth values.

Meanwhile, the loss of rich spatial information also brings a low-

resolution and blurry results. This motivates us to further construct

a separate spatial branch without any pooling or downsamping to

extract HR features, which can remedy the spatial information loss

in contextual branch. 

Next, we present the motivation of our design methodology.

Fig. 3 (a) and (b) introduce two relevant nonlocal correlation mod-

ules proposed in [34] and [19] . Given the input feature map X of

the size h × w × c , where h, w, c are the height, width, and chan-

nels respectively, [34] implicitly modeled the relationship of dif-

ferent image locations with an affinity layer. An operator of Local

multiplication (LocalMul) is used to calculate the affinity (or called

similarity) matrix in a local region. Wang et al. [19] computes the

response at a position by attending to all positions and taking their

weighted average in an embedding space, which can be regarded

as a global filtering operation on feature maps. The filtering ma-
rix is calculated by the global correlation (MatMul) and Softmax

n a feature map. Then the top “MatMul” is used to apply filtering

atrix on the reshaped input feature X to obtain the output fea-

ure map. Note that both structures use pair-wise multiplication to

btain the pixel similarities. In contrast, Gan et al. [34] restricts

he multiplication operation into a fixed nonlocal neighborhood

epending on the size K , which can decrease the implementation

omplexity compared to the “MatMul” operation that applied on

he whole image domain. On the contrary, Gan et al. [34] uses

earned weights from fully connected layer to fuse the local and

onlocal features, which loses the latent positional correspondence

etween neighboring pixels, while [19] keeps the merit of comput-

ng responses based on relationships between different locations.

nspired by the respective advantages of both modules, we design

ur nonlocal spatial attention module by introducing non-local fil-

ering strategy in the network to maintain the non-local behavior,

ut replacing the global cross correlation with a nonlocal affinity

o balance the complexity and performance. Experimental section

alidates the effectiveness of our design from both accuracy and

unning time, and also demonstrates that a constricted region sup-

ort for capturing the nonlocal correlation is sufficient to facilitate

he depth map inference. 

. Proposed method 

Our framework can be divided into three parts, i.e., contextual

ranch (CB), spatial branch (SB) and refinement module (RM), as

hown in Fig. 4 . In CB, we use ResNet-101 [46] as our backbone

y taking a HR color image as input. The feature maps obtained

rom the backbone network are fed into the dual attention module,

ncluding parallel proposed nonlocal spatial attention (NSA) mod-

le and a simple channel attention module. Note that NSA aims to

trengthen the nonlocal representations within a feature map by

electively focusing on useful high-level information to guide the

epth estimation, while the channel attention module aims to ef-

ectively mine the relationship between feature channels and then

mphasize useful feature channels. 

Then, a spatial pyramid pooling scheme [47] is stacked on our

ttention module to further capture the multi-scale information.

he CB generates an 8 × downsampling LR depth map from the
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Fig. 5. Backbone network. All the successive skip structures in ResNet-101 model are uniformly marked as a residual block (Res Block). 

Fig. 6. Channel attention module. 
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1 In this case, we have c 
′ 

pixels, and each pixel can be regarded as a vector with 

the dimension h × w 
nput color image. In SB, we generate a group of feature maps with

he same resolution of input color image. In RM, we first design a

ierarchical upsampling network based on residue learning struc-

ure to progressively upsample the LR depth map from CB to the

R resolution, then a feature fusion block is proposed to fuse both

he upsampled features from CB and HR features from SB. 

.1. Contextual branch (CB) 

Backbone network . The original ResNet-101 downsamples the

eature resolution by five times to aggregate features, resulting a

/32 output resolution of the input. Therefore, dilated convolutions

ith the dilation rate set to 2 (2-DConv) [48] are used to replace

he downsampling operators in Res-4 Block and Res-5 Block, thus

eeping the output resolution at a relative large size, i.e., 1/8 of the

nput to preserve more spatial details, as shown in Fig. 5 . 

Dual attention module . As shown in Fig. 3 (c), we design a non-

ocal spatial attention module to draw nonlocal dependencies over

ocal features generated by the backbone network. We explicitly

odel between the input and output feature maps X and Y based

n the non-local filtering equation: 

 = N 

−1 F ∗x, (1)

here x, y are the vector versions of the input and output feature

aps X and Y , respectively. F ∗ is a filtering matrix that provides an

nterpretation of the nonlocal structure, where F ∗(p, q ) = x T p x q de-

otes the similarity between pixels p and q. N is a diagonal matrix

n which each element in the diagonal equals to �q F ( p, q ) for a

iven pixel p. X is first fed into 1 × 1 convolutions to reduce the

umber of channels to c 
′ = 32 . Then we use “LocalMul” operation

o compute the pixel similarities in a local squared window with

he size of 2 k + 1 . Note that each pixel can be regarded as a vec-

or with the dimension c 
′ 
, and the “LocalMul” operation for each

aired pixels can be regarded as an inner product. Without loss

f positional pixel correspondence, we rearrange the feature maps

btained from “LocalMul” according to the relative pixels relation-

hip, to form a sparse filtering matrix F ∗. Note that the compu-

ation complexity can largely reduce from ( h × w ) 2 × c multipli-

ations to the number of h × w × c × (2 k + 1) 2 when using local

peration (LocalMul) instead of global correlation (MatMul). The
Softmax” layer equals to the normalization process. Then the top

MatMul” is used to filter on the input reshaped feature x to out-

ut the feature map y . Finally, the reshaped feature map Y and the

nput X are added together to output the result. 

Meanwhile, the process to capture the channel relationship is

imilar to the original self-attention module ( Fig. 3 (b)) except for

he first “MatMul” step, in which channel weighting matrix is cal-

ulated in the channel dimension 

1 . We do not alter the structure

or the channel attention module, since there are only h × w × c ′ 2 
ultiplications due to the compressed channel dimensions (shown

n Fig. 6 ). Note that the channel attention module selectively em-

hasizes interdependent channel maps by integrating associated

eatures among all channel maps. 

Finally we aggregate the output features from the two atten-

ion modules to achieve better feature representations. The pro-

osed dual attention module successfully leverages the power of

raditional nonlocal filtering strategy and provides rich similarity-

easure features for depth estimation, which also alleviates the

arameter demand. 

Multi-scale module . Four different dilated convolutions (6-, 12-

 18-, and 24-DConv) are applied in parallel as a pyramid structure

o extract four feature maps with different receptive fields. Then,

e sum the four feature maps to obtain the output depth map.

he scheme uses multi-scale fusion to capture objects of different

cales, which can enhance the ability of feature representations for

ixel-level regression. 

.2. Spatial branch (SB) 

Different form contextual branch, the objective of spatial branch

s to acquire HR features, which can be regarded as low-level infor-

ation. A lightweight network with no pooling or downsampling

peration is enough to preserve the spatial size of the original in-

ut image. Therefore, we first manually extract edge content from

olor image by a high-pass filter, then send it into a three-layer

etwork. The first two layers include a convolution followed by
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Table 1 

Objective performance comparison between the proposed method and other state-of-the-art methods. 

The compared methods in top part are trained on a larger training set containing at least 20K image 

pairs, while the ones in bottom part trained on 795 image pairs from the official splitting. 

Method Error (Lower is better) Accuracy (Higher is better) 

RMSE (lin) Log10 RMSE (log) δ < 1.25 δ < 1.25 2 δ < 1.25 3 

Eigen and Fergus [8] 0.907 - 0.283 61.1% 88.7% 97.1% 

Li et al. [26] 0.635 0.063 - 78.8% 95.8% 99.1% 

Chakrabarti et al. [49] 0.620 - 0.205 80.6% 95.8% 98.7% 

Laina et al. [25] 0.573 0.055 0.204 81.1% 95.3% 98.8% 

Lee et al. [20] 0.573 - 0.193 81.5% 96.3% 99.1% 

Heo et al. [10] 0.571 0.058 - 81.6% 96.4% 99.2% 

Ours 0.474 0.063 0.081 78.4% 94.8% 98.6% 

Li et al. [21] 0.821 0.094 0.214 62.1% 88.6% 96.8% 

Liu et al. [23] 0.824 0.095 - 61.4% 88.3% 97.1% 

Gan et al. [34] 0.631 0.066 - 75.6% 93.4% 98.0% 

Ours 0.474 0.063 0.081 78.4% 94.8% 98.6% 

Fig. 7. Feature fusion block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

5

 

o  

i  

t  

F  

p  

i  

fi  

fi  

e  

i  

l  

fi  

s  

m  

T  

b

 

m  

 

4  

a  

w  

c

5

 

o  

u

5

 

o  

o  

r  

i  

s  

s  

p  

a  
batch normalization and ReLU, while the last one only contains a

3 × 3 convolution. 

4.3. Refinement module (RM) 

The LR depth map obtained from CB is fed into three con-

tinuous Up-Blocks to progressively enlarge the resolution of the

feature maps to the original HR size. All the Up-Blocks have the

same structure, sequentially including a convolution layer, a stan-

dard skip structure [46] , and a transposed convolution layer to up-

sample the feature map. 

Note that the upsampled features from CB and the HR features

from SB represent different levels of feature representation. There-

fore, we design a feature fusion module to combine these two fea-

tures. As shown in Fig. 7 , the concatenated features from SB and

CB are first sent into a 3 × 3 convolution, then pooled to a feature

vector to re-weight each channel of the features, like SENet [18] .

The whole module can be regarded as a process of feature selec-

tion and combination. Finally, a 3 × 3 convolution layer is used to

generate the HR depth map. 

4.4. Loss function 

The overall loss function can be defined as follows: 

L ( ˆ D L , ˆ D ) = 

N ∑ 

i =1 

(
|| ˆ D L 

(i ) − D 

(i ) 
L 

|| 2 2 + λ|| ̂  D 

(i ) − D 

(i ) || 2 2 

)
, (2)

where D , ˆ D , D L , and 

ˆ D L represent the groundtruth and the pre-

dicted HR depth maps and their corresponding LR versions, re-

spectively. λ is a balance parameter. N is the number of training

samples. Note that imposing penalties on depth maps of different

resolutions is similar to the deeply-supervised network that guides

the network training to predict output images at different scales. 
. Experimental results 

.1. Implementation and training details 

We train our model based on the TensorFlow framework. All

ur experiments are conducted on a desktop PC with Intel 4.2GHz

7-7700k CPU, 32GB RAM and Nvidia 1080Ti 11GB GPU. We first

rain each sub-network separately with respective loss function.

or contextual branch, we use the ResNet-101 network parameters

retrained on ImageNet to initialize the network, and randomly

nitialize the attention and multi-scale modules using the prede-

ned TensorFlow function ‘tf.random_normal_initializer’. We then

netune the model weights with its L2-norm loss function for 30

pochs. For spatial branch and refinement module, we randomly

nitialize their model weights, and train together with its L2-norm

oss function for 15 epochs. Finally, all sub-networks are jointly

ne-tuned using our proposed loss function with double supervi-

ion in Eq. 2 for the additional 30 epochs. We used Adam opti-

izer with momentum = 0.9, β1 = 0.9, β2 = 0.99 and ε = 10 −8 .

he learning rate is initialized to 1e-4 for all layers and decreased

y 0.9 every epoch. The parameter λ is set to 0.6. 

For quantitative evaluation, we assess with the five perfor-

ance metrics: 1) Rmse(lin): 

√ 

1 
N 

∑ 

p (d 
gt 
p − d p ) 2 ; 2) Average Log 10 :

1 
N 

∑ 

p | l og 10 d 
gt 
p − l og 10 d p | ; 3) Rmse(log): 

√ 

1 
N 

∑ 

p (Logd 
gt 
p − Logd p ) 2 ;

) Abs Rel: 1 
N 

∑ 

p 

| d gt 
p −d p | 
d 

gt 
p 

; 5) Accuracy with threshold thr: percent-

ge (%) of d p s.t. max ( 
d 

gt 
p 

d p 
, 

d p 

d 
gt 
p 

) = δ < thr. In the following figures,

arm color denotes farther distance, while cold color represents

loser distance. 

.2. Performance comparison 

In this section, an indoor dataset (NYU v2 dataset [50] ) and two

utdoor dataset (Make3D dataset [51] and KITTI dataset [52] ) are

sed to conduct our performance comparison. 

.2.1. NYU V2 dataset 

The benchmark RGB-D NYU v2 dataset [50] is used to conduct

ur experiments. NYU dataset is an indoor dataset with 120K pairs

f RGB and depth maps gathered by a Microsoft Kinect. The image

esolution is 640 × 480 pixels. The dataset is split into a train-

ng (249 scenes) and a test set (215 scenes). We follow the official

plitting, and use 795 image pairs for training, and 654 for testing

eparately. We augment the training data with rotation and flip-

ing operations. Note that, different from other methods that using

t least 20K image pairs as their training subset sampled from the
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Fig. 8. Visual comparison results between different methods. From left to right, the images are (a) Ground truth depth maps and its corresponding color image; (b) Ours; 

(c) Chakrabarti et al. [49] ; (d) Laina et al. [25] ; (e) Lee et al. [20] . 
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f  
ull dataset, our model is trained on a small labeled training sub-

et with only 795 image pairs. We evaluate our results compared

ith other state-of-the-art methods [8,10,20,21,23,25,26,34,49] . The

bjective performances of the compared methods are provided by

heir respective papers and shown in Table 1 . For fairly compari-

on, we separate the above methods into two parts: the ones in

op part are trained on a larger dataset containing at least 20K im-

ge pairs, while others in bottom part trained on 795 image pairs

btained from the official splitting. 

Compared with the methods that trained on the same training

ataset with ours (bottom part), we achieve the lowest Error val-

es on all the three measurements and the highest scores in Ac-

uracy with all the three thresholds. Next, we compare with other

ethods that using training image pairs about 25 times as much

s ours (top part). Our method achieves comparable scores under

og10 and other three metrics in Accuracy , but obtains the low-

st values in terms of Rmse (lin) and Rmse (log) metrics. Note that

e improve the performance of Rmse (lin) and Rmse (log) by about

7% and 42% than the second best one (0.571, 0.193), respectively.

his explains that Rmse measures the square dissimilarity between

ecovered depth and its corresponding groundtruth, and can am-

lify the errors when there appears obvious wrong estimation

n some regions. Lower Rmse values correspond to better protect

he estimated scene structure, which demonstrates our effective-

ess to infer a precise scene depth map. The visual comparisons

n Fig. 8 also verify our viewpoint. The results from Chakrabarti

t al. [49] deform severely. Almost all the fine structures and ob-

ect contours can not be preserved, and large areas are subjective
 c
o wrongly predicted depth values. Laina et al. [25] has a relative

recise estimated geometry structure than the above method, but

lso fails to keep the depth boundaries sharp. Lee et al. [20] ob-

ains a relatively higher Accuracy values. However, through closely

bservation, their results are obviously more blurry than ours, and

annot well protect scene structure and details. In general, our re-

ults are most similar to the groundtruth, and achieve appealing

erformance on both objective and visual comparison. 

.2.2. Make3D dataset 

Make3D dataset [51] consists of 400 training and 134 testing

utdoor images obtained from 3D laser scanner. The depth map

esolution is 55 × 305, while the RGB images is 2272 × 1704.

ollowing [53] , we resize both color images and depth images to

60 × 345. Then, we augment the training data with rotation and

ipping operations. For evaluation, we downsample the estimated

epth map to 55 × 305 and compare against the ground-truth

epth map in the original size. We only compute the errors in re-

ions of depths less than 70 \ ,m (C1 criterion). Table 2 shows the

omparison results with other methods [10,21,23,25,53] . Early algo-

ithms, such as [21,23,53] , can not obtain satisfactory results for all

hree metrics. We generate comparable performances with Laina

t al. [25] and Heo et al. [10] on rel and Log_10 metrics, but ob-

ious better performance than theirs on Rmse metric. Fig. 9 shows

ualitative results. The results from Laina et al. are subjective to

lurring artifacts, and cannot infer the right depth at the areas of

ar distance, while our method can obtain the most similar results

ompared to the groundtruths. 
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Fig. 9. Visual comparison on Make3D dataset: (a) color image; (b) GT; (c) Ours; (d) Laina et al. [25] . 

Table 2 

Objective performance comparison on Make3D dataset. 

Method Error (Lower is better) 

Abs Rel Log10 RMSE (lin) 

Liu et al. [23] 0.335 0.137 9.49 

Liu et al. [53] 0.314 0.119 8.60 

Li et al. [21] 0.278 0.092 7.19 

Laina et al. [25] 0.176 0.072 4.46 

Heo et al. [10] 0.171 0.063 4.46 

Ours 0.171 0.062 4.17 
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5.2.3. KITTI Dataset 

The KITTI dataset [52] contains sparse 3D laser measurements

taken from a Velodyne laser sensor for outdoor scenes. The Eigen

split [30] for KITTI dataset has 22,600 stereo image pairs for train-

ing and 697 stereo image pairs for testing. The input resolution
or the proposed method is 512 ∗256. We evaluate our results com-

ared with other state-of-the-art methods [23,30,32,35–39,54–56] ,

n which [23,30,32,54] are trained by using groundtruth depth as

upervisory signal, while the rest ones using binocular images as

upervision. Table. 3 lists the comparison results with the state-

f-the-art methods. We achieve the noticeable improvements in

ost metrics (except for RMSE log and δ < 1.25 3 ), which demon-

trates the effectiveness of our method. Fig. 10 shows the qual-

tative results. The ground-truth depth map is interpolated from

parse measurements for visualization purpose. It can be seen that

he proposed method is capable of preserving sharp boundaries at

bjects and restoring more accurate depth values for slim and dis-

ant objects. 

.3. Ablation study 

In this section, we use the larger and more challenging NYU v2

ataset to conduct our ablation study. 
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Fig. 10. Qualitative comparison with different methods on KITTI dataset [52] . (a) color image, (b) ground truth, (c) Zhan et al. [56] , (d) Pilzer et al. [37] , (e) Ours. 

Fig. 11. Visual comparison results of different backbone networks: (a) Color images; Results generated by (b) VGG19; (c) ResNet50; (d) Our proposed baseline. (e) 

Groundtruth. 

Table 3 

Objective performance comparison on KITTI dataset using the Eigen split [30] . 

Method Error (lower is better) Accuracy (higher is better) 

Abs Rel RMSE(lin) RMSE(log) δ < 1.25 δ < 1.25 2 δ < 1.25 3 

Eigen et al. [30] 0.203 6.307 0.246 0.702 0.890 0.958 

Liu et al. [23] 0.201 6.471 0.273 0.680 0.898 0.967 

Nath Kundu et al. [54] 0.167 5.578 0.237 0.771 0.922 0.971 

Xu et al. [32] 0.132 - 0.162 0.804 0.945 0.981 

Godard et al. [55] 0.148 5.927 0.247 0.803 0.922 0.964 

Zhan et al. [56] 0.144 5.869 0.241 0.803 0.928 0.969 

Zhao et al. [35] 0.158 5.285 0.238 0.811 0.934 0.970 

Chen et al. [36] 0.118 5.096 0.211 0.839 0.945 0.977 

Pilzer et al. [37] 0.142 5.785 0.239 0.795 0.924 0.968 

Wong and Soatto [38] 0.133 5.515 0.231 0.826 0.934 0.969 

Puscas et al. [39] 0.135 5.582 0.235 0.828 0.933 0.967 

Ours 0.112 4.978 0.210 0.842 0.947 0.973 
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2 We use bicubic interpolation to directly upsample the 1/8 output depth map to 

the original size. 
Comparison between Different Backbones. We test the perfor-

ance under different backbone networks. We replace our base-

ine network by other backbones, i.e., VGG19 and ResNet50, but

eep all other modules unchanged for fair comparison. The objec-

ive comparison in Table 4 demonstrates the effectiveness of our

aseline network, which is designed based on deeper ResNet101

odel with dilated convolutions instead of the downsampling op-

rator. Fig. 11 shows the visual comparison results generated from

ifferent backbone networks. As the network becomes deeper, the

erformance is better, i.e., the depth boundaries are more sharp,

nd the scene structures are protected better. It demonstrates the

ffectiveness of our baseline network, which is designed based on

eeper ResNet101 model with dilated convolutions instead of the

ownsampling operator at the last two Res-Blocks. 
Contributions of each component. To discover the vital el-

ments in our proposed method, we conduct ablation study by

radually integrating each component into our model. The whole

ramework can be divided into five parts, i.e., the backbone net-

ork in contextual branch (baseline), multi-scale module (M), re-

nement module (RM), spatial branch (SB), nonlocal spatial atten-

ion module (NSA), and channel attention module (CA). The com-

arison results are shown in Table 5 . The baseline alone 2 can-

ot obtain good results. When adding the multi-scale module, the

odification of network structure leads to slight performance im-
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Fig. 12. Visual comparison results of different variants of our method: (a) Baseline; (b) Baseline + M + RM; (c) Baseline + M + RM + NSA; (d) Our full model; (e) Groundtruth 

depth maps and its corresponding color images. 

Table 4 

Objective Comparison between different backbone networks. 

Backbone Error (Lower is better) Accuracy (Higher is better) 

RMSE (lin) Log10 RMSE (log) δ < 1.25 δ < 1.25 2 δ < 1.25 3 

VGG19 0.626 0.084 0.106 66.8% 90.7% 97.3% 

ResNet50 0.566 0.075 0.097 72.4% 92.5% 97.6% 

Ours 0.474 0.063 0.081 78.4% 94.8% 98.6% 

Table 5 

Quantitative results of different variants of our method. 

Method M RM SB NSA CA Error (Lower is better) 

RMSE (lin) Log10 RMSE (log) 

Baseline 0.784 0.102 0.124 

Ours � 0.737 0.095 0.118 

� � 0.563 0.075 0.092 

� � � 0.544 0.070 0.087 

� � � � 0.476 0.064 0.081 

� � � � 0.478 0.067 0.081 

� � � � � 0.474 0.063 0.081 
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provement, e.g. in case of Rmse (lin) from 0.784 to 0.737. Next, our

depth refinement module can be regarded as an advanced depth

enhancement method, which improves the performance of Rmse

(lin) from 0.737 to 0.563. When introducing HR features from spa-

tial branch, the performance sustains growth. Moreover, our spa-

tial and channel attention modules serve as different roles in ex-

tracting the informative features, i.e., NSA focuses on strengthening
he nonlocal spatial relationship within a feature channel while CA

mphasizes the useful feature channels along the channel dimen-

ion. Though CA brings less performance improvement than NSA,

ut still contributes to the final performance. Besides, the compu-

ational cost of CA is very small and can be ignored. Therefore,

A can be added to the whole framework to pursue the ultimate

erformance without increasing the computation burden. As a re-
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Fig. 13. Visual comparison between different neighborhood size: (a) k = 0; (b) k = 3; (c) k = 6; (d) NLB [19] (k equals to image size). The error maps between groudtruths 

and generated results are shown for clear visualization (bright color for large errors). As k increases, the inferred depth maps are more accurate. 

Table 6 

Objective comparison between different neighborhood size. n, c, k represent 

image size, the number of channels, and neighborhood size respectively. 

Error (Lower is better) Complexity Time (ms) 

K RMSE (lin) Log10 RMSE (log) 

0 0.484 0.065 0.083 O (4 nck 2 ) 34.0 ~ 48.4 

3 0.481 0.065 0.083 

6 0.476 0.064 0.082 

8 0.474 0.063 0.081 

10 0.474 0.063 0.081 

Global 0.474 0.063 0.081 O ( n 2 c ) 91.7 
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ult, the complete proposed framework with all the parts provides

tate-of-the-art performance. As shown in Fig. 12 , when integrating

ith each module in turn, the scene structures are more clearer

nd protected better. 

Analysis of nonlocal neighborhood k . To verify the effective-

ess of our revised spatial attention module, we test the impact

n the estimation performance under different neighborhood sizes

from 3 × 3 to 21 × 21). Note that the case of k = 0 degener-

tes the attention module to ordinary local convolutions. When the

eighborhood size equals to the image size, the “LocalMul” opera-
ion approaches to the global cross correlation (Global) proposed in

ang et.al (NLB for short) [19] . Table 6 shows the objective com-

arison results. The performance improves as k gets larger. How-

ver, the performance saturates when k is bigger than 8. Note that

ur spatial attention module with a relative small k = 6 still yields

ompetitive results, but has a low complexity of O(4 nck 2 ) com-

ared to O(n 2 c) of NLB [19] in the construction of the weight-

ng matrix F , since the size k is far smaller than the image size

 = h × w . Fig. 13 shows the visual comparison of different neigh-

orhood size. Obviously, the case of k = 0 is subject to blurry ar-

ifacts and wrong estimations, while the cases of k = 3 achieves

elatively better performance. The cases of k = 6 and NLB generate

esults with almost no difference com pared to each other, but both

re more clear than those of k = 3 . As a result, the proposed spatial

ttention ( k = 6 ) could be a valuable method to be implemented

n faster depth estimation where the running time is largely short-

ned than NLB. 

Comparison on different attention modules. For fair compari-

on, we test the performances of different attention modules based

n our proposed framwork and show the results in Table 7 . For the

patial attention module only (top part), NLB [19] and ours achieve

etter performance than Affinity [34] , which demonstrates the ef-

ectiveness of the explicit design of positional correspondence. For
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Fig. 14. Visual comparison between CBAM [16] and ours: (a) Color images; Results generated by (b) CBAM [16] and (c) ours; (d) Groundtruth. Note that CBAM and our 

proposed method both exploit spatial and channel interdependencies, but with different design methodologies. The visual comparisons verify that our proposed attention 

module obtains more clear object contours and protects fine details and scene structures better than CBAM. 

Fig. 15. Qualitative 3D reconstruction results on three scenes. (a) LSD-SLAM, (b) Chakrabarti et al. [49] , (c) Laina et al. [25] , (d) ours, (e) groundtruth. 

Table 7 

Objective Comparison between different attention modules. n, c, k represent image size, 

the number of channels, and neighborhood size respectively. The top part, middle part, 

and bottom part represent the comparison on spatial attention, channel attention and dual 

attention, respectively. 

Module Error (Lower is better) Complexity Time (ms) 

RMSE (lin) Log10 RMSE (log) 

Affinity [34] 0.631 0.066 0.102 O (4 nck 2 ) 49.3 

NLB [19] 0.475 0.064 0.081 O ( n 2 c ) 91.7 

Ours_s (k = 6) 0.476 0.064 0.082 O (4 nck 2 ) 41.5 

SENet_c [18] 0.492 0.070 0.116 - 47.2 

Ours_c 0.475 0.064 0.081 O ( nc 2 ) 40.3 

CBAM [16] 0.481 0.064 0.095 - 100.4 

Ours_full 0.474 0.063 0.081 O (nc(c + 4 k 2 )) 80.3 
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Fig. 16. Different views of our reconstruction results are shown for better visualization. 
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Table 8 

Runtime comparison between different methods. The top part 

and bottom part represent the comparison on NYU and KITTI 

datasets, respectively. The input test images are resized to 

640 × 480 for all the methods from both parts. 

Method Error (Lower is better) Time 

RMSE (lin) RMSE (log) (ms) 

Eigen and Fergus [8] 0.907 0.283 201.3 

Liu et al. [23] 0.824 - 175.2 

Chakrabarti et al. [49] 0.620 0.205 150.3 

Laina et al. [25] 0.573 0.204 72.4 

Ours_ResNet50 0.566 0.097 70.3 

Ours 0.474 0.081 80.3 

Godard et al. [55] 5.927 0.247 87.4 

Pilzer et al. [37] 5.785 0.239 93.2 

Ours_ResNet50 5.024 0.215 70.3 
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g  
he channel attention module only (middle part), we achieve better

erformance and lower computation complexity and runtime than

ENet [18] . For dual attention module, we also obtain more ap-

ealing results than CBAM [16] that uses simple convolutions and

lobal average pooling to capture contextual dependencies in both

patial and channel dimensions. In terms of running time, Affin-

ty [34] is slightly lower than Ours_s due to the usage of fully con-

ected layer. The inference times for Ours_s and Ours_full also de-

rease by 50.2ms and 20.1ms compared to NLB and CBAM, respec-

ively. 

.4. Discussions 

CBAM [16] also emphasizes the importance to extract informa-

ive features by blending cross-channel and spatial information to-

ether, which can boost representation power of CNNs. The chan-

el attention of CBAM can be regarded as an improved version of

ENet [18] , which uses average pooling and max-pooling instead

f global pooling from SENet to generate two context descriptors.

hen, both CBAM and SENet produce the final channel attention

ap through two successive fully connected layers, which are sub-

ect to more training and test cost than Ours_full and Ours_c, re-

pectively. In contrast, our attention module is free of training pa-

ameters, and the runtime is largely shortened by compressing the

umber of input feature channels into 32 before sending into the

hannel attention module, which facilitates the computation along

he channel dimension. 

For spatial attention module, CBAM first applies pooling opera-

ions along the channel axis, and then use a convolution layer to

enerate a spatial attention map. However, there are two disadvan-

ages. First, using convolutions to aggregate features will lose the

atent positional correspondence between neighboring pixels. Sec-

nd, only one convolution layer with the kernel size of 7 × 7 (the

alf window size k equals 3) is not enough to capture nonlocal de-
endencies. Compared to CBAM, we resort to linear algebra based

ttention module [19] to keep the latent positional correspondence

etween neighboring pixels and channels, and use the nonlocal

ross correlation to balance the algorithm complexity and perfor-

ance. For fairly comparison, we test the performance of CBAM

ased on our full model, only replacing our proposed dual atten-

ion module. We add extra visual comparisons in Fig. 14 . For all

he presented cases, we obtain more appealing results than CBAM

odule [16] . Note that, our proposed method can keep the object

ontours sharper, and protect fine details and scene structures bet-

er than CBAM. 

Besides, runtime (ms) is measured between different ap-

roaches as shown in Table 8 . For fairly comparison, the test im-

ges are resized to 640 × 480 (about 0.29 MP) for all the meth-

ds and all the datasets. For NYU dataset (top part), since Laina

t al. [25] constructs their network based on ResNet50, we also

ive the runtime of our method with ResNet50 as the backbone
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(Ours_ResNet50) for fairly comparison. Note that we achieves both

the best performance (underlined numbers) and lowest runtime

than Laina et al. For KITTI dataset, both compared methods use

ResNet50 as their encoder and a symmetric ResNet50 as decoder.

In contrast, our method has a light-weight decoder with only three

up-projection block and a fusion block, which spends less infer-

ence time than other methods and achieves more superior results

due to our careful designed encoder. 

5.5. Comparison under the vSLAM framwork 

The rapid development of visual simultaneous localization and

mapping (vSLAM) [57] has created a new visualization and sensing

wave for computer vision community. Although the tracking per-

formance of such algorithm is impressive, the generated 3D map

is extremely sparse and cannot be used in practical application.

We therefore integrate these CNN-based dense depth estimation

methods into the SLAM framework to show the effectiveness in

addressing the dense scene reconstruction. More importantly, we

will compare the performance of different depth estimation meth-

ods under the vSLAM framework. 

Three video scenes, i.e., ‘bathroom 0 0 03’ from NYU dataset [58] ,

‘fr1 rpy’ from TUM SLAM dataset [59] , and ‘lr kt0’ from ICL-NUIM

SLAM dataset [60] are used to conduct our experiments. The track-

ing poses are extracted from LSD-SLAM [57] , and used for dense

reconstruction together with the depth estimation results. 

As shown in Fig. 15 , the original SLAM framwork, i.e., LSD-

SLAM, can only obtain very sparse 3D reconstruction, which can

not be applied in real conditions. Once combined with dense depth

map inferred from CNN, the reconstructed scenes are more dis-

tinct. Compared between Chakrabarti et al. [49] , Laina et al. [25] ,

and our method, the 3D reconstruction results from ours present

precise and undistorted scenes, which are more similar to the

groundtruth. Fig. 16 presents our reconstruction results from dif-

ferent views. Visual results demonstrate the effectiveness of our

depth estimation network. 

6. Conclusion and future work 

We present DPNet to fully address the problems of inaccurate

depth inference and spatial information loss. Specifically, in con-

textual branch (CB), we propose an effective and efficient nonlocal

spatial attention module by introducing non-local filtering strategy

to explicitly exploit the pixel relationship in spatial domain, which

can bring significant promotion on depth details inference. Mean-

while, we design a spatial branch (SB) to preserve the spatial in-

formation and generate high-resolution features from input color

image. A refinement module (RM) is then proposed to fuse the het-

erogeneous features from both spatial and contextual branches to

obtain a high quality depth map. Experimental results show that

the proposed method outperforms SOTA methods on benchmark

RGB-D datasets. 

Our future work lies in two aspects: 1) focusing on dense re-

construction based on vSLAM framework. Note that we only test

the performance of depth estimation with the help of camera

poses extracted by SLAM. How to use the sparse depth points ex-

tracted from ORB features in SLAM to help improve the perfor-

mance of our depth estimation task is a key point. Besides, the es-

timated depth can also be used in turn to help to better estimate

the camera pose, and therefore make the tracking process more

robust. 2) The use of unsupervised manner and domain adaptation

techniques. Due to the lack of effective paired training data, and

the weak generalization ability when training and testing on dif-

ferent datasets, these techniques are desirable to address the real

problem in monocular depth estimation. 
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