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PMBANet: Progressive Multi-Branch Aggregation
Network for Scene Depth Super-Resolution

Xinchen Ye, Baoli Sun, Zhihui Wang, Jingyu Yang, Rui Xu, Haojie Li, Baopu Li

Abstract—Depth map super-resolution is an ill-posed inverse
problem with many challenges. First, depth boundaries are
generally hard to reconstruct particularly at large magnifica-
tion factors. Second, depth regions on fine structures and tiny
objects in the scene are destroyed seriously by downsampling
degradation. To tackle these difficulties, we propose a progressive
multi-branch aggregation network (PMBANet), which consists of
stacked MBA blocks to fully address the above problems and
progressively recover the degraded depth map. Specifically, each
MBA block has multiple parallel branches: 1) The reconstruc-
tion branch is proposed based on the designed attention-based
error feed-forward/-back modules, which iteratively exploits and
compensates the downsampling errors to refine the depth map by
imposing the attention mechanism on the module to gradually
highlight the informative features at depth boundaries. 2) We
formulate a separate guidance branch as prior knowledge to
help to recover the depth details, in which the multi-scale
branch is to learn a multi-scale representation that pays close
attention at objects of different scales, while the color branch
regularizes the depth map by using auxiliary color information.
Then, a fusion block is introduced to adaptively fuse and
select the discriminative features from all the branches. The
design methodology of our whole network is well-founded, and
extensive experiments on benchmark datasets demonstrate that
our method achieves superior performance in comparison with
the state-of-the-art methods. Our code and models are available
at https://github.com/Sunbaoli/PMBANet DSR/.

Index Terms—Depth map, super-resolution, aggregation, pro-
gressive, multi-branch

I. INTRODUCTION

SCene depth map is essential and widely used as a basic
element in many computer vision fields [7], [8], [11].

However, due to the imaging limitation of depth sensors in real
conditions, high quality and high resolution (HR) depth maps
are often difficult or even impossible to be acquired direct-
ly, thus effective pro-precessing depth super-resolution (SR)
techniques are needed to yield HR output from the degraded
low resolution (LR) counterpart. Usually, a color image and
its associated depth map are the photometric and geometrical
representations of the same scene, and have strong structural
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similarity [9]. Therefore, most existing depth SR methods use
color information as guidance to recover the degraded depth
maps. Traditional model-based methods [44] or filter-based
methods [39], [41] constructed the hand-designed objective
functions or filters based on naive assumptions, which can not
approach the real depth map priors and lead to unsatisfactory
results. Recently, CNN-based methods [23], [30], [35], [45]
have been proposed to recover depth maps by automatically
learning well-designed networks from data.

A. Motivation

Although the above CNN-based methods present impressive
performance, the results are unsatisfactory when dealing with
the recovery of depth details. First, depth boundaries are
generally hard to reconstruct from LR depth maps and easy to
lose sharpness particularly at large magnification factors due
to the loss of spatial information. In addition, depth regions
on fine structures and tiny objects in the scene are destroyed
seriously by the downsampling degradation, which further
impedes the accurate depth recovery.

As we observe, the backbone networks of existing depth
SR methods can be classified into two categories, i.e., 1)
cone- or hourglass-shaped architectures [30], [59] that use
low-to-high resolution subnetworks to progressively extract
features and raise the spatial resolution, and 2) barrel-shaped
architectures [36], [53] that extract features and recover the
depth map without changing the feature resolution. Both
architectures belong to the networks designed based on purely
feed-forward connections, which cannot fully exploit effective
high-resolution features in representing the LR to HR relation,
especially for large scaling factors.

Besides, the decrease of resolution brings different degrees
of damage to the objects in the scene, especially to the
fine structures and tiny objects. e.g., the sticks in Art of
Fig. 4, which requires to leverage multi-scale information
to enhance the ability of feature representations and then
accurately recover each depth region. Besides, a mainstream
multi-scale technique is to use multi-scale inputs [17], or
integrate the pyramid dilated convolution modules [5] [19] into
the backbone network from a simple cascaded way and use
a limited number of parallel dilated convolutions to capture
features of different receptive fields, which cannot fully exploit
the multi-scale information.

Moreover, rich color features can be used as guidance to
further resolve the downsamping degradation in depth SR.
However, color discontinuities do not always coincide with
those of depth map (structure inconsistency), which results in
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noticeable artifacts such as texture copying and depth bleeding.
Therefore, how to leverage color information to help recover
the depth map and whether the color image is required for all
upsampling rates, especially for the easily recovered 2× and
4× upsampling cases, still need to be developed and verified.

According to the above analysis, we pursue better archi-
tectural design aiming at further improvements. In cognition
theory [20] and recent progress [25], [26], [37] in deep
learning, feedback connections that inversely transmit response
signals from the higher-order areas to the lower-order areas,
play an important role in human expression and regulation,
which can be used to extract more effective image features
for the computer vision tasks. Besides, self-attention [54] is
widely used to model internal representations and capture
feature interdependencies by attending importance to a group
of feature maps to select more informative features. Usually,
depth map mainly contains smooth areas separated by a few
depth boundaries. What really affects the depth quality is the
sharpness of depth boundaries, but not the smooth areas. This
motivates us to use feedback connections to effectively capture
the high-frequency features around depth boundaries. More-
over, we resort to spatial attention mechanism to automatically
highlight and strengthen the extracted high-frequency features.
By combining the above two techniques, we develop a novel
backbone network focusing on the capability of recovering
depth details, and thus facilitating the depth map recovery.
Besides, to better extract the multi-scale and color features to
assist the depth recovery, we construct two separate branches
to form a parallel learning architecture in which each branch
is accurate and specialized on capturing either multi-scale
or color information. We give a detailed analysis to verify
the effectiveness of our design methodology in Sec. IV and
present more in-depth discussion about our network through
visualizing the intermediate features in Sec. VI.

B. Scope and Contributions
This paper presents a progressive multi-branch aggregation

network (PMBANet) for depth SR, which consists of stacked
multi-branch aggregation (MBA) blocks to progressively re-
cover the degraded depth map, as shown in Fig. 1. Each
MBA block has multiple parallel branches: 1) reconstruction
branch (RB), which is designed via the attention-based error
feed-forward/back modules. It iteratively exploits and com-
pensates the downsampling errors to refine the depth map
by imposing the attention mechanism on the feed-forward/-
back process to gradually highlight the informative features
at depth boundaries. 2) guidance branch (GB), including a
multi-scale branch and a color branch, which is formulated as
a separate subnetwork to help RB to recover the depth details.
The multi-scale branch is to learn a multi-scale representation
that pays close attention at objects of different scales, while
the color branch regularizes the depth map by using auxiliary
color information based on the internal structural correlation
between depth-color pairs. Then, a fusion block is introduced
to adaptively fuse and select the discriminative features from
all the branches. Extensive experiments on benchmark datasets
demonstrate the superiority of our method. Our main contri-
butions are summarized as follows:

1) The proposed parallel architecture inherits the advantage
of ensemble learning, which can learn effective and diverse
features from each branch. Fusion blocks are progressively
used to aggregate information by adaptively attending impor-
tance to the features from multiple branches.

2) A novel backbone network (RB) is designed based on
the feed-forward/-back connections and attention mechanism
to boost the high-resolution representations.

3) A separate multi-scale branch is constructed with a
recombination of dense connections and dilated convolutions
to better capture the multi-scale information.

4) From experiments (Sec. V-C3 and Sec. VI), we also
verify that color information is only suitable to be introduced
in earlier stages to help depth reconstruction. Besides, it
can offer significant assistance and improve the performance
obviously for the 8×/16× cases, but is not helpful, or even
harmful for the easily recovered 2×/4× cases, which provides
some new insights for the future work.

II. RELATED WORK

We first present an overview of CNN-based depth SR
methods in Sec. II-A. Then, all the related techniques, i.e.,
feedback mechanism, self-attention and multi-scale methods,
are briefly reviewed in Sec. II-B - II-D, respectively.

A. Depth map Super-Resolution

Most existing depth SR methods use color information as
guidance to recover the degraded depth maps. Li et al. [36]
employed a two-path CNN to obtain the HR depth map which
is designed based on the concept of joint filters. A simple
fusion branch is added to jointly filter the informative feature
maps from both depth and color branches. Hui et al. [30] also
proposed a gradual up-sampling method with a hierarchical
color guidance module, which further exploits the dependency
between color and depth structure to resolve ambiguity in
depth SR. Ye et al. [59] proposed a depth SR network to
learn a binary map of depth edges from LR depth map and
the corresponding HR color image, and then recovered the
HR depth map based on a edge-guided bilateral filter. Wen
et al. [53] used the color information as guidance to infer a
initial HR depth map, then proposed a coarse-to-fine networks
to progressively optimize the depth map, which can alleviate
texture-copying artifacts and preserve edge details effectively.
Pan et al. [43] proposed to model the structural information of
both the guidance and input image by estimating the spatially
variant linear representation coefficients. Lutio et al. [15]
proposed to find a transformation from the guide image to
the target HR depth map, which can be regarded as a pixel-
wise translation. Kim et al. [32] learned explicitly sparse and
spatially-variant kernels by a deformable kernel networks for
guided depth map upsampling.

To conclude, color information brings significant improve-
ment for depth SR, but may introduce texture-copying artifacts
due to the depth-color inconsistency. We also stand on the
color-guided category, and use the attention mechanism to
fuse the color information under our multi-branch architecture.
We additionally verify the appropriate position to integrate
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color information into the network and the suitability for a
given downsampling case to use color information as guidance,
which are ignored by existing methods.

B. Feedback Mechanism

Feedback mechanism, also called back-projection in tradi-
tional algorithms, has been applied to various computer vision
tasks. At first, back-projection [31] was proposed for the image
registration problem in which it iteratively increases the image
resolution with sub-pixel accuracy based on the feedback
mechanism. Carreira et al. [3] proposed an iterative error
feedback mechanism by iteratively estimating and applying
a correction estimation to the current one. In a few recent
studies, feedback mechanism has showed excellent ability in
the task of image SR. Zhang et al. [64] proposed a model-
based optimization method to solve the image SR problem, in
which data term and smooth term are optimized by alternately
updating a back-projection step and and a well-trained CNN
denoising step, respectively. Han et al. [25] applied a delayed
feedback mechanism which could transmits the information
between two recurrent states in a dual-state RNN. Haris et
al. [26] exploited iterative back-projection units, providing
a error feedback connection to progressively upsample the
image. Based on [26], Liu et al. [40] proposed a novel
dual residual connection network which exploits the potential
of paired operations, e.g., up-/down-samplings or large/small
convolutional kernels, to facilitate several tasks of image
restoration. Zamir et al. [62] and Li et al. [37] both work
in a top-down manner, carrying high-level features back to
previous layers in the next iteration and refining the low-level
encoded features through the hidden states in an RNN.

Note that, the methods [37], [40], [62] and ours are all
proposed based on feedback mechanism, but are implemented
in different ways. [62] and [37] use hidden states in an RNN
to achieve the feedback manner, while [40] uses the proposed
’dual residual connection’ to realize the feature reuse between
paired operations from different stages. In contrast, we design
our feedback modules through the alternating process of
attention feed-forward and feedback in an iterative ‘High-to-
Low’ and ‘Low-to-High’ fashion, in which the high-frequency
features are extracted by the squeeze-and-expand strategy and
further strengthened by the self-attention operation. Our design
is suitable for the task of depth SR, which can better deal with
the recovery of high-frequency depth boundaries.

C. Self-Attention Mechanism

Self-attention mechanism steams from human perception
and visual system, and has recently been widely used in
computer vision to model internal representations by selec-
tively focusing on useful high-level information to guide
the network learning. Wang et al. [51] proposed a residual
attention network which generates attention-aware features
from stacking modules to learn more discriminative feature
representation. SENet [28] focused instead on the channel-
wise feature responses by explicitly modelling interdependen-
cies between channels. CBAM [54] proposed a convolutional
block attention module to effectively infer the attention maps

along channel and spatial. Besides, attention are widely used
in image SR. Hu et al. [29] constructed a set of channel-
wise and spatial attention residual blocks to dynamically
modulate multi-level features in global and local manners.
Zhang et al. [65] used the channel attention mechanism to
adaptively recalibrate the importance of each channel. Dai
et al. [14] used attention modules to efficiently exploit the
feature correlations in spatial and channel dimensions for
stronger feature expression. They further proposed a second-
order attention network for more powerful feature expression
and feature correlation learning [13].

Usually, depth map mainly contains smooth areas sep-
arated by a few depth boundaries. For the task of depth
SR, high-frequency depth boundaries are generally hard to
reconstruct compared with the smooth areas in a depth map.
Note that, the spatial attention can automatically highlight and
strengthen the high-frequency features around the regions of
depth boundaries. Therefore, we effectively combine the feed-
forward/-back connections and spatial attention mechanism,
and propose a novel attention-based error feed-forward/-back
module to excavate informative features at depth boundaries
for depth SR. Besides, our proposed fusion block aggregates
multi-branch information by adaptively attending importance
to all the features based on channel-wise attention mechanism.

D. Multi-Scale Methods

To achieve precise detection, recognition, or even pixel-level
regression, it is necessary to develop multi-scale techniques to
enhance the ability of feature representations for objects at
different scales. Some methods aim at exploiting multi-scale
information use multi-scale inputs [17], the encoder-decoder
structures with long connections (U-net) [57], or the recurrent
models [6]. For example, Eigen et al. [17] proposed a three-
scale pyramid CNN as a coarse-to-fine manner for regressing
dense depth maps. Feature pyramid network [38] exploited the
inherent pyramidal hierarchy of deep convolutional networks
to construct feature pyramids for object detection. Another
mainstream multi-scale technique is to integrate the pyramid
dilated convolution modules [5] [19] into the backbone net-
work from a simple cascaded way and extract features from
a limited number of fields-of-views at multiple sampling rates
for capturing image context.

In general, all of the above methods combine the multi-
scale techniques into the backbone network to help improve
the network representation. Different from them, we construct
an independent branch from the backbone network to model
the multi-scale problem separately, which extracts the multi-
scale feature representation more efficiently. Besides, through
the effective recombination of dense connections and dilated
convolutions, we can obtain more detailed and delicate multi-
scale information than previous pyramid pooling modules.

III. PROGRESSIVE MULTI-BRANCH AGGREGATION
NETWORK

Fig. 1 illustrates the overview of our proposed Progressive
Multi-Branch Aggregation Network (PMBANet). Let DLR be
the input LR depth map with the size of w×h×1 and IHR be
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Fig. 1. Network architecture of the proposed PMBANet. To better present the whole framework and implementation details, different colored rectangles are
used to represent different stages and different operations in each stage.

the input HR color image with the size of W×H×3. The goal
is to output the corresponding HR version DSR with the size
of W ×H×1. Note that W = r∗w and H = r∗h, where r is
the up-scaling factor. The whole PMBANet is mainly divided
into three stages: shallow feature extraction stage, progressive
optimization stage and final reconstruction stage.

Shallow feature extraction. Before entering the core pro-
gressive optimization stage, we firstly extract initial depth
features Fd and color features Fc by shallow convolution
layers from DLR and IHR, respectively. Note that, Fd is sent
into both reconstruction branch and guidance branch in the
next stage as input, while Fc is only sent into guidance branch.

Progressive optimization. Progressive optimization stage
consists of K stacked MBA blocks in which each one has
two parallel branches, i.e, a reconstruction branch (RB) and
a guidance branch (GB). Then, a fusion block is used to
adaptively fuse and select the discriminative features from both
branches. Through stacked MBA blocks, the missing depth
details in HR feature space are progressively recovered.

Final reconstruction. The target super-resolved depth map
DSR is reconstructed by using an 1×1 convolution on the
output feature map of the last MBA block.

A. Reconstruction Branch

Motivated by the feedback mechanism [3], [26] and self-
attention [54], we propose a novel attention-based error feed-
forward and feedback module, called attention feed-forward/-
back (AF) block to construct our RB, as shown in Fig. 1. In
our scenario, feed-forward and feedback can be regarded as
the flows of ‘High-to-Low’ and ‘Low-to-High’ respectively.

Specifically, the attention feed-forward module enhances the
feature representations at depth boundaries through projecting
HR representations to LR spatial domain and highlights the
high-frequency features in the LR space. In contrast, the
attention feedback module maps the LR features back into the
HR spatial domain and further strengthens the high-frequency
features in the HR space. Through the alternating process
of attention feed-forward and feedback, the branch gradually
makes the reconstruction errors smaller, so as to better recover
the depth details.

As shown in Fig. 2, our AF block consists of two stages:
attention feed-forward that highlights the informative features
in LR domain, and attention feedback that further strengthens
the effective features in HR domain. The attention feed-
forward in the t-th (t < T ) AF block is defined as follows:

F t
lr1 = Downt(F t−1

hr ). (1)
F t
pooling = Avgpoolt(F t

lr1, j). (2)

F t
lr2 = Upt(F t

pooling). (3)

W t
Res1 = PRelut(F t

lr2 − F t
lr1). (4)

F t
lr3 = F t

lr1 + γ(F t
lr1 ∗W t

Res1). (5)

where the Down(·) and Up(·) are convolution and deconvo-
lution operations, respectively. Avgpool(·, k) is the average
pooling operation with the pooling factor j, while PRelu(·)
represents the parametric rectified linear unit.

At the t-th AF block, it takes previous output feature map
F t−1
hr from (t− 1)-th AF blocks with the size of H ×W ×C

as input. First, we downsample F t−1
hr into LR feature map

F t
lr1 with the size of h × w × C and apply average pooling

to F t
lr1. The pooling result has the size of h/j × w/j. Then,
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Fig. 2. Network architecture of the proposed AF block

we upsample F t
pooling to the size of h×w. Next, the attention

map W t
Res1 is calculated by computing the residual between

the F t
lr2 and F t

lr1 activated by PRelu. Finally, to highlight
the high-frequency regions in F t

lr1, the attention operation is
defined as Eq. (5), where ∗ is element-wise multiplication and
γ is a hyper-parameter that affects the importance of attention
weights.

After the attention feed-forward stage, attention feedback is
concatenated to reconstruct the depth details in HR domain,
which is defined as follows:

F t
hr1 = Upt(F t

lr3). (6)
F t
lr4 = Downt(F t

hr1). (7)
F t
Res2 = Upt(F t

lr4 − F t
lr3). (8)

W t
Res2 = PRelut(F t

Res2). (9)
F t
hr = F t

hr1 + γ(F t
hr1 ∗W t

Res2). (10)

At the t-th iteration, we take the output F t
lr3 of attention

feed-forward stage as input, and map it to HR features F t
hr1.

Then we map F t
hr1 back to LR feature map F t

lr4. The residual
F t
Res2 is computed between F t

lr3 and F t
lr4 and then mapped

to HR feature space. The attention map W t
Res2 is calculated

by applying PReLu on F t
Res2 and then employed to highlight

the informative features (Eq. (10)) to obtain the final output
F t
hr.
Finally, we concatenate T HR feature maps from all the AF

blocks, and use an 1×1 convolution to output the final feature
map F k

RB for the k-th MBA block with the size of H×W×C:

F k
RB = Convk1×1([F

1,k
hr , F

2,k
hr , ..., F

T,k
hr ]). (11)

where [·] denotes concatenation operation.
Note that, the goal of using a combination of average

pooling and de-convolution is to effectively extract the high-
frequency features in LR spatial domain. We first use the
‘Avgpool’ operation to squeeze the features, and expand them
by the ‘Deconv’ operation, which can be regarded as an
operation of image blurring. Thus, the high-frequency features
are then extracted by the subtraction between the original
features and the blurred ones, and are finally highlighted by
the attention operation. Similar techniques are also used in
our attention feedback block (HR space). Both squeeze-and-
expand and attention operations contribute to the extraction of
high-frequency features.

B. Guidance Branch

We formulate our GB as a separate parallel subnetwork,
including a multi-scale branch (MB) and a color branch
(CB) that simultaneously extract multi-scale representation and
color information efficiently, to help RB to recover the depth
details.

(1) Multi-Scale Branch. The sufficient multi-scale infor-
mation is crucial to achieve high accuracy reconstruction for
depth SR when addressing the different impact to multi-scale
objects caused by downsampling degradation. As shown in
Fig. 1, MB consists of a stack of four dilated convolution
layers (DilatConv) followed by PReLu, an 1× 1 convolution
layer and a deconvolution layer (DeConv). all the DilatConvs
have 3×3 kernels with the dilation factors set to 1, 2, 3 and
4, respectively. Dense connections are used to alleviate the
vanishing-gradient problem and make use of all the features
from different stages, which can obtain more detailed and
delicate multi-scale information. Therefore, the input of each
dilated convolution layer is the concatenation of the output
from all previous dilated convolution layers:

F k
di

= DilatConv([F k
d1
, ..., F k

di−1
], i), i = 2, 3, 4. (12)

where F k
di

is the feature map from the output of i-th dilation
convolution. i is dilated factor. Finally, we map the features
with different receptive fields to the HR features F k

MB by the
last deconvolution operation:

F k
MB = DeConvk(Convk1×1[F

k
d1
, F k

d2
, F k

d3
, F k

d4
]) (13)

(2) Color Branch. Since the HR color image can be easily
obtained by consumer camera sensors in most cases, the
available color image can be used as prior information to up-
sample the LR depth map, under the assumption of structural
similarity between color-depth pairs. In the color branch, we
extract the rich color features as additional prior knowledge
for CB by a shallow CNN. We use three convolution layers
with 3×3, 3×3 and 1×1 kernels continuously to obtain the
color feature F k

CB for the k-th MBA block. Note that the
color features cannot be used for all the MBA blocks, which
can lead to the texture copying or depth bleeding artifacts
due to the depth-color inconsistency. Through the following
experiments, we will verify that color information is only
suitable to be introduced in earlier MBA blocks to avoid the
above artifacts. Besides, we also demonstrate that it can offer
significant assistance and improve the performance obviously
for the higher upsampling cases, but is not helpful, or even
harmful for the easily recovered lower upsampling cases.

C. Fusion

The goal of our fusion block is to effectively mine the
relationship between feature channels in different branches,
and then select useful feature channels to facilitate the depth
SR. Channel attention [61] aims to learn a weight distribution
of image features along the channel dimension, and apply
the learned weights to the original feature channels to make
the task focus on some key feature channels and ignore the
unimportant ones, which is suitable for our fusion block
that needs to automatically and adaptively aggregate different
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Fig. 3. The proposed fusion block.

feature channels from all the branches. We formulate our
fusion block to fuse the features F k

RB , F k
MB and F k

CB from
all the branches in k-th MBA block and the output F k−1

HR from
(k−1)-th MBA block, as shown in Fig. 3. The fusion strategy
is defined as follows:

F k
HR F = [F k

RB , F
k
MB , F

k
CB , F

k−1
HR ]. (14)

F k
HR F1 = Globalpoolk(F k

HR F ). (15)

F k
HR F2 = Convk1 (F

k
HR F1). (16)

F k
HR F3 = Convk2 (F

k
HR F2). (17)

F k
HR = F k

HR F + F k
HR F ∗ σ(F k

HR F3). (18)

where Globalpool(·) is a global pooling operation to gen-
erate a feature vector F k

HR F1. We use two convolution
operations to further obtain statistic correlation of each channel
in F k

HR F . σ is sigmoid gateway. Finally, the channels of
FHR F get reweighted as shown in Eq. (18), and we obtain
the final feature map F k

HR.
Note that all branches work complementarily, and we con-

duct repeated information aggregation by fusing the parallel
multi-branch networks over and over through the whole pro-
cess to boost the high-resolution representations.

IV. DESIGN METHODOLOGY

Traditionally, color-guided depth SR is formulated as an
optimization problem, which includes a fidelity term and a
prior term to make the ill-posed problem well constrained. It
can be roughly summarized into the following optimization
function:

x∗ = argmin
x

1

2
‖y −Kx‖2 + λ

∑
l

ωl ∗ ρl(fl ⊗ x) (19)

where K is a downsampling degradation matrix, λ is a trade-
off parameter. fl and ρl(·) are a set of filtering kernels and
penalty functions, respectively. ω is the weighting matrix
computed from the corresponding color image. ⊗ is the
convolution operator.

A key point for these methods is to design any component
in the prior term, e.g., total variation (TV) [60], TGV [18]
or RBF [22] for the kernel f , L1 norm [60] or Welsch’s
function [33] for the penalty function ρ(·), and nonlocal filter
[58] or anisotropic diffusion [18] for computing the weight
ω. However, these hand-crafted priors cannot approach the
real image prior. There have been several attempts to incor-
porate plug-and-play denoisers into model-based optimization
methods and deduce particular iterative schemes [10] based
on a given algorithm, e.g., gradient descent [22], HQS [64] or
ADMM [4], to calculate the solution. For example, we may

utilize a coordinate descent flow to minimize the above energy,
i.e.,

xt+1 = xt +Rf (x) + λRp(x) (20)

where Rf (x) and Rp(x) are gradients or residuals with re-
spect to the energies of fidelity term and prior term, which can
be regarded as a progressive residual learning that iteratively
applys the fidelity and prior residuals on xt to find a new xt+1.

Usually, Rp(x) is replaced by a off-the-shelf denoiser, e.g.,
BM3D [34] or a more robust CNN denoiser [64]. Meanwhile,
Rf (x) is computed through least squares or using iterative
back-projection to refine the result xt without explicitly com-
puting the inversion of K [12] [64]. However, the unknown
of K, e.g., including some mixed degradations (noise, depth
missing and downsampling), leads to difficulties in modelling
the fidelity term with limited expressivity. Second, existing
CNN denoisers are not specifically designed for depth SR, in
which the use of color and multi-scale information are often
ignored.

Motivated by the above analysis, we pursue better ar-
chitectural design aiming at further improvements for depth
SR. First, we formulate two parallel branches, i.e., RB and
GB, to separately model the fidelity and prior residuals,
respectively. Instead of a simple summation with a parameter
λ, we introduce a fusion block to aggregate both branches.
Through iterative optimization and repeated aggregation, we
progressively recover the degraded depth map. Next, we design
RB based on back-projection technique and self-attention
mechanism to better exploit the HR features. Instead of hard-
coding the fidelity term, let the network to freely learn in what
point the forward operator K should be evaluated. For GB,
to better characterize the filter bank fl, we design a multi-
scale branch based on different dilated kernels with dense
connections to extract various features with different field
of views. PReLu is used after each dilated convolution as a
nonlinear penalty. Besides, color branch is also used as prior
knowledge to further exploit color features to help recover the
degraded depth map. GB is dynamically adjusted to account
for the updating together with RB. In general, the design
methodology of our whole network originates from the model-
based optimization methods, but simultaneously models the
fidelity term and the prior term with deep networks.

A similar work related to us is DG-CNN (dynamic guidance
with CNN nonlinearity parametrization) [21], which is also
designed based on the optimization models. It unfolds the
optimization process, then uses a simple CNN that contains
two separate encoders and a shared decoder to parameterize
the stage-wise operation. In each stage, LR depth map and
color image are feed into their corresponding encoders and the
intermediate depth map is obtained from the shared decoder.
In contrast, we also use the stage-wise learning framework, but
design a more sophisticated and professional parallel network
architecture in each stage, which can learn effective and
diverse features (including high-frequency, multi-scale, and
color features) from every branch, and adaptively aggregate
all the branch in the ensemble.
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TABLE I
QUANTITATIVE DEPTH UPSAMPLING RESULTS ON MIDDLEBURY 2005 DATASET. (LOWER MAD AND PE VALUES, BETTER PERFORMANCE)

Art Books Dolls Laundry Moebius Reindeer

×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16 ×4 ×8 ×16

CLMF [41] 0.76/8.12 1.44/17.28 2.87/33.25 0.28/3.27 0.51/7.25 1.02/16.09 0.34/4.40 0.60/8.76 1.01/18.32 0.50/5.50 0.80/12.67 1.67/25.40 0.29/4.13 0.51/8.42 0.97/17.27 0.51/4.65 0.84/9.96 1.55/18.34

JGF [39] 0.47/3.25 0.78/7.39 1.54/14.31 0.24/2.14 0.43/5.41 0.81/12.05 0.33/3.23 0.59/7.29 1.06/15.87 0.36/2.60 0.64/4.54 1.20/8.69 0.25/3.36 0.46/6.45 0.80/12.33 0.38/2.27 0.64/5.17 1.09/11.84

EDGE [44] 0.65/6.82 1.03/13.49 2.11/25.90 0.30/3.35 0.56/8.50 1.03/19.32 0.31/2.90 0.56/6.84 1.05/17.97 0.32/2.82 0.54/5.46 1.14/13.57 0.29/3.72 0.51/7.36 1.10/14.05 0.37/2.67 0.63/6.22 1.28/16.80

TGV [18] 0.65/5.14 1.17/10.51 2.30/21.37 0.27/2.48 0.42/4.65 0.82/11.20 0.33/4.45 0.70/11.12 2.20/45.54 0.55/6.99 1.22/16.32 3.37/53.61 0.29/3.68 0.49/6.84 0.90/14.09 0.49/4.67 1.03/11.22 3.05/43.48

KSVD [63] 0.64/3.46 0.81/5.18 1.47/8.39 0.23/2.13 0.52/3.97 0.76/8.76 0.34/4.53 0.56/6.18 0.82/12.98 0.35/2.19 0.52/3.89 1.08/8.79 0.28/2.08 0.48/4.86 0.81/8.97 0.47/2.19 0.57/5.76 0.99/12.67

CDLLC [55] 0.53/2.86 0.76/4.59 1.41/7.53 0.19/1.34 0.46/3.67 0.75/8.12 0.31/4.61 0.53/5.94 0.79/12.64 0.30/2.08 0.48/3.77 0.96/8.25 0.27/1.98 0.46/4.59 0.79/7.89 0.43/2.09 0.55/5.39 0.98/11.49

PB [42] 0.79/3.12 0.93/6.18 1.98/12.34 0.16/1.39 0.43/3.34 0.79/8.12 0.53/3.99 0.83/6.22 0.99/12.86 1.13/2.68 1.89/5.62 2.87/11.76 0.17/1.95 0.47/4.12 0.82/8.32 0.56/6.04 0.97/12.17 1.89/21.35

EG [56] 0.48/2.48 0.71/3.31 1.35/5.88 0.15/1.23 0.36/3.09 0.70/7.58 0.27/2.72 0.49/5.59 0.74/12.06 0.28/1.62 0.45/2.86 0.92/7.87 0.23/1.88 0.42/4.29 0.75/7.63 0.36/1.97 0.51/4.31 0.95/9.27

SRCNN [16] 0.63/7.61 1.21/14.54 2.34/23.65 0.25/2.88 0.52/7.98 0.97/15.24 0.29/3.93 0.58/8.34 1.03/16.13 0.40/6.25 0.87/13.63 1.74/24.84 0.25/3.63 0.43/7.28 0.87/14.53 0.35/3.84 0.75/7.98 1.47/14.78

DSP [52] 0.73/7.83 1.56/15.21 3.03/31.32 0.28/3.19 0.61/8.52 1.31/16.73 0.32/4.74 0.65/9.53 1.45/19.37 0.45/6.19 0.98/12.86 2.01/22.96 0.31/3.89 0.59/8.23 1.26/16.58 0.42/3.59 0.84/7.23 1.73/14.12

ATGVNet [45] 0.65/3.78 0.81/3.78 1.42/9.68 0.43/5.48 0.51/7.16 0.79/10.32 0.41/4.55 0.52/6.27 0.56/12.64 0.37/2.07 0.89/3.78 0.94/8.69 0.38/3.47 0.45/4.81 0.80/8.56 0.41/3.82 0.58/5.68 1.01/12.63

MSG [30] 0.46/2.31 0.76/4.31 1.53/8.78 0.15/1.21 0.41/3.24 0.76/7.85 0.25/2.39 0.51/4.86 0.87/9.94 0.30/1.68 0.46/2.78 1.12/7.62 0.21/1.79 0.43/4.05 0.76/7.48 0.31/1.73 0.52/2.93 0.99/7.63

DGDIE [22] 0.48/2.34 1.20/13.18 2.44/26.32 0.30/3.21 0.58/7.33 1.02/14.25 0.34/4.79 0.63/9.44 0.93/11.66 0.35/2.03 0.86/3.69 1.56/16.72 0.28/1.98 0.58/8.11 0.98/16.22 0.35/1.76 0.73/7.82 1.29/15.83

DEIN [59] 0.40/2.17 0.64/3.62 1.34/6.69 0.22/1.68 0.37/3.20 0.78/8.05 0.22/1.73 0.38/3.38 0.73/9.95 0.23/1.70 0.36/3.27 0.81/7.71 0.20/1.89 0.35/3.02 0.73/7.42 0.26/1.40 0.40/2.76 0.80/5.88

CCFN [53] 0.43/2.23 0.72/3.59 1.50/7.28 0.17/1.19 0.36/3.07 0.69/7.32 0.25/1.98 0.46/4.49 0.75/9.84 0.24/1.39 0.41/2.49 0.71/7.35 0.23/2.18 0.39/3.91 0.73/7.41 0.29/1.51 0.46/2.79 0.95/6.58

GSRPT [15] 0.48/2.53 0.74/4.18 1.48/7.83 0.21/1.77 0.38/4.23 0.76/7.67 0.28/2.84 0.48/4.61 0.79/10.12 0.33/1.79 0.56/4.55 1.24/8.98 0.24/2.02 0.49/4.70 0.80/8.38 0.31/1.58 0.61/5.90 1.07/10.35

Ours 0.26/1.95 0.51/3.45 1.22/6.28 0.15/1.13 0.26/2.87 0.59/6.79 0.19/1.35 0.32/3.22 0.59/8.92 0.17/1.27 0.34/2.41 0.71/6.88 0.16/1.21 0.26/2.87 0.67/6.73 0.17/1.28 0.34/2.40 0.74/5.66

V. EXPERIMENTAL RESULTS

In this section, the implementation details are given in
(Sec.V-A). Our proposed method is first evaluated on the
performance of depth SR under different datasets (Sec.V-B).
Then, ablation study is presented to analyze the design choices
of the proposed scheme (Sec.V-C).

A. Implementation Details

During training, we use 36 RGB-D images (6, 21, 9 images
from 2001 [2], 2006 [27] and 2014 [46] datasets, respectively)
from Middlebury dataset1. To evaluate the performance of our
PMBANet, we test on 6 standard depth maps (Art, Books,
Moebius, Dolls, Laundry, Reindeer) from Middlebury 2005
[47], 4 standard depth maps (Tsukuba, Venus, Teddy, Cones)
from Middlebury 2003 [48]. We evaluate the generalization a-
bility on 5 depth maps (Alley 1-48, Ambush 2-15, Ambush 4-
12, Ambush 5-41, Temple 3-23) from MPI dataset 2 and 3 real
depth maps captured by ToF sensor from ToFMark dataset
[18]. Another training and testing dataset is NYU v2 RGB-
D dataset [49] captured from Kinect. Following the common
splitting method, we use the first 1000 images of the NYU
dataset as training data, and evaluate on the last 449 images. To
produce LR depth maps, we downsample the HR depth maps
to the target size using Bicubic interpolation. We augment
the training dataset by 180-rotation and randomly extracted
10000+ depth patches of a fixed size of 16×16 from LR depth
maps. The corresponding HR depth patches are the squared
size of 32, 64, 128, and 256 according to 2, 4, 8, and 16 up-
scaling factors respectively. Similar to other works, the metric
of Mean Absolute Difference (MAD), Root Mean Square Error
(RMSE), and percentage of error pixels (PE) [53] is used to
measure the difference between the predicted depth map and
the corresponding ground truth.

During training, we set the number of MBA blocks as K =
3 and the number of AF blocks in each MBA block as T =
4. The ablation study presented below will demonstrate the

1Middlebury datasets, http://vision.middlebury.edu/.
2MPI Sintel datasets, http://sintel.is.tue.mpg.de/.

effectiveness of our configurations. In each AF block, we set
the pooling factor as j = 4 and the hyper-paramter γ to 0.1. At
the both attention feed-forward and attention feedback stages,
we used the kernel size of 6×6, 8×8, 12×12 and 20×20 with
a stride size of 2, 4, 8 and 16 for upsampling (deconvolution)
and downsampling (convolution) operations in 2×, 4×, 8×
and 16× upsampling cases, respectively.

Our models are trained end-to-end using L1 loss between
the predicted HR depth map and ground truth. For optimiza-
tion, we used Adam optimizer with momentum = 0.9, β1 =
0.9, β2 = 0.99 and ε = 10−8. The initial learning rate is set
to 0.0001 and decreased by multipling by 0.1 for every 100
epochs. We implemented our models with PyTorch framework
and trained them on a NVIDIA 1080Ti GPU.

B. Performance Comparison

1) Middlebury dataset (Noiseless Case): To demonstrate
the capacity of our proposed PMBANet, we compare with
other state-of-the-art depth SR methods under different up-
scaling factors ( 4×, 8× and 16×) in Table I 3, Note that, from
all the compared methods, deep learning based methods are
SRCNN [16], DSP [52], ATGVNet [45], MSG [30], DGDIE
[22], DEIN [59], CCFN [53], GSRPT [15] and ours, which are
all trained an tested on the same datasets for fairly comparison.

As shown in Table I (objective results on Middlebury
2005), traditional filtering or optimization based methods
obtain relatively higher MAD and PE values compared to
the CNN-based methods. Compared among these CNN-based
methods, our PMBANet almost obtains the best objective
results, especially for the 8× and 16× cases which is more
difficult to recover. Similar conclusion can be obtained in Table
II, which shows the evaluation on Middlebury 2003. Fig. 4
further demonstrates the visual performance of our method
under the 8× case. Obviously, we obtain the most similar
reconstruction results compared to ground truth depth patches
in terms of structure and details. Notice that for the large scene
objects in 2rd and 4th rows, all the methods present similar

3The cases of 2× are omitted to save space.
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TABLE II
QUANTITATIVE DEPTH UPSAMPLING RESULTS ON MIDDLEBURY 2003 DATASET. (LOWER MAD AND PE VALUES, BETTER PERFORMANCE.)

Tsukuba Venus Teddy Cones

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

EDGE [44] 0.61/2.35 0.77/4.44 1.32/6.95 0.23/0.44 0.29/0.90 0.56/2.65 0.78/3.12 1.08/6.27 2.13/13.73 1.03/3.26 1.52/7.18 2.98/14.38

TGV [18] 0.53/1.79 0.71/3.08 1.18/5.31 0.17/0.41 0.24/0.60 0.43/1.76 0.75/2.31 0.83/3.72 1.62/7.51 0.83/2.54 1.13/4.34 2.23/8.17

KSVD [63] 0.51/2.48 0.66/4.30 1.09/6.78 0.23/0.59 0.30/1.22 0.59/3.15 0.70/2.97 0.92/5.17 2.07/8.93 0.91/3.97 1.15/6.45 2.28/12.51

CDLLC [55] 0.48/2.41 0.61/4.15 0.98/6.59 0.21/0.71 0.27/1.18 0.53/3.08 0.67/2.99 0.85/4.72 1.59/9.13 0.85/3.68 1.07/5.79 2.12/11.23

PB [42] 0.62/1.57 0.86/2.52 1.71/3.69 0.30/0.39 0.38/0.66 0.62/1.83 0.89/4.13 1.26/8.03 2.73/17.90 1.18/4.35 1.56/9.73 3.11/17.69

EG [56] 0.45/1.27 0.67/2.36 1.09/3.50 0.19/0.37 0.29/0.54 0.49/1.62 0.63/1.61 0.95/3.11 1.51/6.18 0.76/1.72 1.16/3.09 2.14/6.27

SRCNN [16] 0.64/2.99 0.79/5.52 1.43/8.64 0.28/0.71 0.34/1.30 0.61/3.23 0.88/3.98 1.10/6.92 2.35/14.12 1.12/4.99 1.41/8.64 2.91/16.18

DSP [52] 0.65/3.12 0.68/3.24 0.83/5.68 0.26/0.68 0.34/1.21 0.69/2.87 0.75/3.92 1.24/4.27 3.01/5.67 1.86/4.83 1.35/8.72 4.86/9.35

ATGVNet [45] 0.46/1.52 0.72/2.41 0.88/3.59 0.23/0.40 0.31/0.63 0.52/1.76 0.69/3.35 1.03/5.37 1.60/7.62 0.83/4.63 1.27/5.74 2.42/7.36

MSG [30] 0.41/1.22 0.62/2.21 0.75/3.44 0.14/0.35 0.34/0.51 0.57/1.58 0.65/1.59 0.82/3.07 2.76/3.67 0.73/1.71 1.06/2.92 2.22/3.71

DEIN [59] 0.40/1.19 0.58/1.98 0.63/2.24 0.10/0.29 0.21/0.42 0.36/1.11 0.64/1.72 0.73/2.55 1.25/2.48 0.69/1.44 0.92/2.17 1.87/3.40

CCFN [53] 0.39/1.16 0.61/2.18 0.71/3.42 0.12/0.33 0.25/0.51 0.44/1.56 0.61/1.58 0.79/2.98 1.42/3.58 0.71/1.64 1.05/2.89 2.09/3.70

GSRPT [15] 0.41/1.53 0.60/2.14 0.73/3.27 0.14/0.34 0.32/0.60 0.51/1.46 0.61/1.62 0.80/3.02 2.35/3.78 0.71/1.66 1.03/2.78 2.15/3.62

Ours 0.35/1.14 0.50/1.92 0.58/2.04 0.08/0.26 0.19/0.35 0.33/1.04 0.64/1.71 0.70/2.45 1.20/2.24 0.67/1.39 0.87/2.00 1.78/3.32

Fig. 4. Visual comparison of 8× upsampling results on two examples (Art, Dolls). (a) GT depth maps and color images; (b) LR; (c) Bicubic; (d) JGF [39]; (e)
DGDIE [22]; (f) DEIN [59]; (g) GSRPT [15]; (h) PMBANet; (i) GT. Depth patches are enlarged and colored to enhance the contrast for clear visualization.

recovered results. However, for the tiny objects, i.e., the stick
in Art and the toy’s head in Dolls, the compared methods
present obvious jaggy artifacts and wrong estimation on the
stick and some blurring on the head, which demonstrates that
the downsampling degradation brings more severe damages
on fine structures and thus makes the recovery more difficult
on these regions. In contrast, our method accurately and
clearly recovers the depth boundaries of these tiny objects,
and achieves the best performance.

2) Middlebury dataset (Noisy Case): The noisy datasets are
built according to [58], where the authors first add Gaussian
noise with a variance of 25 to the original Middlebury datasets,
and then downsample the polluted datasets at four scales. We
choose some methods that are also applied in noisy cases
for comparison. The quantitative results for 2×. 4×, 8× and
16× noisy cases are shown in Table III. We can clearly see
that our PMBANet can better deal with noisy removal when
upsampling the depth maps, even compared to the CNN-based
methods, i.e., MSG, DEIN, DGDIE and GSRPT. Fig. 5 further
presents the qualitative results from 8× downsampling and
noisy degradation. To conclude, filter based methods, i.e, JGF

cannot remove the noise and generate blurring and cotton-
like artifacts. TGV belongs to the category of optimization
methods that inherits the advantage of exploiting global in-
formation, thus achieves better performance when addressing
the problem of noise removal. Besides, the learning-based
methods (DGDIE, GSRPT and our PMBANet) are qualified
for the noise removal compared to previous methods. However,
the results of DGDIE present excessive blurring. In contrast,
GSRPT and our PMBANet can remove noise and keep the
sharpest depth boundaries at the same time.

3) NYU datasset: Additionally, we evaluate on NYU
dataset to demonstrate the effectiveness of our method. All
the deep learning based methods (DJF [36], DGDIE [22],
GbFT [1], PAC [50], SVLRM [43], DKN [32] ) are trained
and tested on NYU dataset with the same training-testing
splitting method for fairly comparison. As shown in Table
IV, our PMBANet obtains the best objective results for all
the upsampling cases. Fig. 6 further demonstrates the visual
performance of our method under the 8× case. Focusing on the
yellow rectangle, our method successfully recovers the right
depth information of the vase on the table. Besides, we achieve
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TABLE III
QUANTITATIVE DEPTH UPSAMPLING RESULTS ON SYNTHETIC NOISY MILDDLEBURRY DATASET. (LOWER MAD VALUES, BETTER PERFORMANCE.)

Art Books Dolls Laundry Moebius Reindeer

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×
Bicubic 3.52 3.84 4.47 5.72 3.30 3.37 3.51 3.82 3.28 3.34 3.47 3.72 3.35 3.49 3.77 4.35 3.28 3.36 3.50 3.80 3.39 3.52 3.82 4.45

EDGE [44] 1.69 2.40 3.60 5.75 1.12 1.44 1.81 2.59 1.14 1.54 2.07 3.02 1.28 1.63 2.20 3.34 1.13 1.45 1.95 2.91 1.20 1.60 2.40 3.97

CLMF [41] 1.19 1.77 2.95 4.91 0.90 1.48 2.38 3.36 0.96 1.54 2.37 3.25 0.94 1.55 2.50 3.81 0.87 1.44 2.32 3.30 0.96 1.56 2.54 3.85

JGF [39] 2.36 2.74 3.64 5.46 2.12 2.25 2.49 3.25 2.09 2.22 2.49 3.25 2.16 2.37 2.85 3.90 2.09 2.24 2.56 3.28 2.18 2.40 2.89 3.94

TGV [18] 0.82 1.26 2.76 6.87 0.50 0.74 1.49 2.74 0.66 1.63 1.75 3.71 0.61 1.59 1.89 4.16 0.56 0.89 1.72 3.99 0.59 0.84 1.75 4.40

MSG [30] 0.58 0.84 1.57 2.98 0.46 0.62 1.18 1.48 0.59 0.84 1.12 1.78 0.51 0.78 1.03 1.89 0.48 0.66 1.13 1.76 0.45 0.57 1.12 1.87

DEIN [59] 0.91 1.32 2.44 4.24 0.48 0.73 1.44 2.38 0.64 1.54 1.55 2.45 0.61 1.49 1.77 3.20 0.52 0.78 1.64 3.29 0.52 0.77 1.46 3.87

DGDIE [22] 0.61 0.99 1.84 3.34 0.52 0.81 1.29 2.04 0.63 0.95 1.39 2.05 0.58 1.10 1.73 2.67 0.53 0.84 1.37 2.16 0.52 0.79 1.33 2.19

GSRPT [15] 0.46 0.68 1.33 2.47 0.38 0.52 0.87 1.37 0.56 0.78 1.26 2.03 0.53 0.76 1.24 1.86 0.45 0.65 1.03 1.68 0.48 0.55 1.04 1.70

Ours 0.44 0.59 0.98 1.89 0.34 0.44 0.71 1.23 0.50 0.64 1.01 1.56 0.42 0.54 0.89 1.62 0.37 0.48 0.81 1.30 0.37 0.47 0.78 1.52

Fig. 5. Visual comparison for recovered depth maps from 8× downsampling and noisy degradation on two examples (Books, Reindeer): (a) GT depth maps
and color images; (b) JGF [39]; (c) TGV [18]; (d) DGDIE [22]; (e) GSRPT [15]; (f) PMBANet.

TABLE IV
QUANTITATIVE DEPTH UPSAMPLING RESULTS (IN RMSE) ON REAL NYU DATASET. (LOWER RMSE VALUES, BETTER PERFORMANCE.)

Method Bicubic TGV [18] EDGE [44] DJF [36] DGDIE [22] GbFT [1] PAC [50] SVLRM [43] DKN [32] Ours

×4 8.16 6.98 5.21 3.54 1.56 3.35 2.39 1.74 1.62 1.06
×8 14.22 11.23 9.56 6.20 2.99 5.73 4.59 5.59 3.26 2.28
×16 22.32 28.13 18.10 10.21 5.24 9.01 8.09 7.23 6.51 4.98

Fig. 6. Visual comparison for recovered depth maps from ×8 downsampling on NYU v2 dataset. (a) color image; (b) GT; (c) SDF [24]; (d) DJF [36] ; (e)
SVLRM [43]; (f) PMBANet.

the sharpest and clearest results (red rectangle).

4) Evaluation on Generalization: we choose MPI dataset
to evaluate the generalization and compare with DJF [36],
MSG [30], DEIN [59], DGDIE [22] and GSRPT [15], from
which their source codes are available. Table V presents the
quantitative performance on the chosen five depth maps from

MPI. DJF achieves comparable results with ours on the first
two cases, but is totally inferior to us on the last three ones.
Fig. 7 shows the visual comparison between GSRPT and ours.
We obtain the right and clear depth boundaries in the recovered
results (red cycles).
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TABLE V
QUANTITATIVE DEPTH UPSAMPLING RESULTS ON MPI DATASET. (LOWER MAD VALUES, BETTER PEFORMANCE.)

Alley 1-48 Ambush 2-15 Ambush 4-12 Ambush 5-41 Temple 3-23

2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×
DJF [36] 0.07 0.17 0.46 0.90 0.06 0.20 0.48 0.96 0.21 0.54 1.14 2.49 0.28 0.72 1.42 2.67 0.15 0.40 0.79 1.76

MSG [30] 0.13 0.20 0.39 0.87 0.09 0.26 0.51 1.12 0.22 0.43 1.10 1.82 0.20 0.77 1.36 2.01 0.15 0.44 0.82 1.78

DEIN [59] 0.13 0.21 0.42 0.88 0.09 0.25 0.47 1.08 0.25 0.55 1.12 1.76 0.24 0.81 1.69 2.32 0.17 0.41 0.89 1.82

DGDIE [22] 0.23 0.18 0.44 0.79 0.23 0.21 0.65 1.24 0.23 0.57 1.26 2.23 0.23 0.73 1.79 3.10 0.23 0.40 1.01 1.90

GSRPT [15] 0.14 0.22 0.52 0.93 0.17 0.29 0.62 1.44 0.15 0.62 1.32 2.45 0.15 0.75 1.98 3.46 0.17 0.49 1.19 2.07

Ours 0.11 0.20 0.38 0.90 0.08 0.25 0.45 1.05 0.14 0.50 0.92 1.71 0.14 0.72 1.21 1.90 0.13 0.38 0.74 1.72

TABLE VI
QUANTITATIVE DEPTH UPSAMPLING RESULTS ON TOFMARK. (LOWER MAD VALUES, BETTER PEFORMANCE.)

Method Bicubic CLMF [41] JGF [39] TGV [18] MSG [30] DEIN [59] DGDIE [22] GSRPT [15] PMBANet

Books 16.23 13.89 17.39 12.36 12.26 12.78 12.31 13.21 12.08

Shark 17.78 15.10 18.17 15.29 14.11 15.11 14.06 15.03 10.15

Devil 16.66 14.55 19.02 14.68 12.45 14.25 9.66 12.27 11.95

Fig. 7. Generalization on MPI dataset (8× cases on Alley 1-48, Ambush 4-
12): (a) GT; (b) GSRPT [15] and (c) PMBANet.

5) Evaluation on Real data: We evaluate the proposed
method on ToFMark, which is a real ToF sensor dataset
that contains only three test cases. Different from DGDIE
that first fills the missing points in captured depth map and
then synthesizes training datasets to train a new model by
computing the noise distribution between depth pairs, we just
fill the missing points and downsample the input by 2× rate,
then directly send it into our model (‘2× with noise’) to
acquire the final results. Other methods, i.e., MSG, DEIN,
and GSPRT, are tested with the same strategy with ours. We
compare the above deep learning based methods and some
traditional methods shown in Table VI and Fig. 9. We achieve
the best performance on Books, Shark, and relatively lower
MAD values on Devil than DGDIE but higher than other
mehods, including MSG, DEIN, GSPRT, and all the non-
learning methods. Without reconstructing the training dataset,
we also obtain satisfactory results. The most essential reason
is that what we really learn is the mapping from the blurring
on depth edges to the accurate edge location (high-frequency
information), but not directly inferring the depth value of every
pixel, especially on the depth smooth regions. Our model

Fig. 8. Trade-offs between runtime and accuracy on 8× case under different
combinations of K and T. The input image size is 1376×1104 (Art).

TABLE VII
ABLATION STUDY OF RECONSTRUCTION BRANCH TO VERIFY THE

EFFECTIVENESS OF OUR DESIGNED ELEMENTS (8× CASE).

Method
MAD Values (the lower the better)

Art Books Dolls Laundry Moebius Reindeer
1) w/o RB 1.212 0.841 0.512 0.742 0.499 0.663

2) RB→IBP 1.171 0.389 0.503 0.662 0.452 0.670
3) RB→LtH 0.553 0.290 0.367 0.397 0.289 0.375

4) RB→DBPN 0.540 0.277 0.358 0.395 0.281 0.368
5) S-E→Plain Residual 0.531 0.273 0.345 0.390 0.272 0.366

6) w/o Attention 0.540 0.276 0.354 0.390 0.279 0.368
Ours 0.529 0.270 0.344 0.387 0.268 0.364

focuses on the learning of high-frequency features extraction
through iterative attention feed-forward and feedback modules,
which can support a great variety of test images that involve
substantial appearance and geometric variations.

C. Ablation Study

In this section, we further verify the key designed modules,
i.e., reconstruction branch, multi-scale branch and color branch
in our framework by ablation study.
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Fig. 10. Visual comparison between different backbone configurations: (a) GT depth map; (b) LR; (c) GT; Results obtained by (d) ‘w/o RB (only multi-scale
branch)’, (e) ‘RB → IBP’, (f) ‘RB → DBPN’, (g) ‘RB → Low-to-High network’ and (h) Ours (RB with multi-scale branch).

Fig. 9. Visual comparison on ToFMark. (a) GT; (b) DGDIE [22]; (c) GSRPT
[15]; (d) ours. Depth pathes are shown for clear visualization.

1) Effectiveness of Reconstruction Branch: To evaluate
the capability of RB, we firstly explore the influence of
different configurations in RB, i.e., the number of MBA
blocks (denoted as K) and the number of attention feed-
forward/-back (AF) blocks (denoted as T ) in each MBA
block, which are the fundamental components of our RB. For
easy comparison, we keep the multi-scale branch along with
the RB, but remove the color branch to avoid the negative
impact from color information. Fusion blocks are also used
to fuse the features from both RB and multi-scale branch. We
construct our RB with a maximum number of MBA blocks
and AF blocks as K = 5 and T = 5, respectively. The
performance improves as K and T get larger. However, the
performance saturates when T approaches to 4 , i.e, the cases
of T = 4 and T = 5 almost achieve the similar results. We also
report the runtime-accuracy relationship under the different
combinations of K and T in Fig. 8. With the consideration of
the network simplicity and effectiveness of training and testing
simultaneously, the case of T = 4 and K = 3 (red star) is our
final choice in PMBANet.

Next, to demonstrate the improvements obtained by the
proposed elements in RB, i.e., the feedback module and the
attention module, we further apply four ablation experiments
by integrating different backbones in our framework:
1) w/o RB (only multi-scale branch): The simple single-
path stacked multi-scale branches are used as backbone, but
without RB.
2) RB→ IBP [31]: Instead of training our PMBANet with RB,
we use a traditional algorithm, i.e., iterative back projection

(IBP) [31] to replace our RB, which is defined in the following:

HRi = HRi−1 + αfUp(LR
i − fDown(HR

i−1)). (21)

where fUp and fDown are linear interpolation (Bicubic) op-
erators with a 8× scale rate. α is step size and set to 1.75.
To obtain a fast convergence, we repeat Eq. (21) five times in
each MPA block. Note that IBP can be regarded as a simple
iterative strategy to approximately solve the fidelity term, as
analyzed in Sec. IV.
3) RB → Low-to-High network [30]: We substitute RB with
a simple low-to-high resolution network architecture proposed
by [30], which is a pure feed-forward architecture.
4) RB → DBPN [26]: A similar architecture is the deep
back-projection network (DBPN) [26], which also exploits
iterative back-projection units to formulate a network. The
main difference between DBPN and our RB is that we also
employ the self-attention mechanism, and effectively combine
the back-projection connections and spatial attention to better
excavate informative features at depth boundaries for depth
SR.

The quantitative results in MAD for the above cases are
shown in Table VII. It is clear that the use of stacked multi-
scale branches alone cannot obtain satisfactory results. Re-
placing the network with a simple IBP algorithm also cannot
improve performance very well, which indicates the necessity
of simultaneous learning fidelity term and prior term. The
next three cases can incrementally verify the effectiveness of
feedback mechanism (between ‘Low-to-High’ and ‘DBPN’)
and attention mechanism (between ‘DBPN’ and ours), and
demonstrates the superior performance of our RB. Fig. 10
further demonstrates the visual performance of our proposed
methods. We achieve the best performance with the sharpest
and most similar results to the groundtruth.

Besides, we also conduct the ablation experiments at the
component-level. As Sec. III-A illustrates, both squeeze-and-
expand (S-E) and attention operations contribute to the extrac-
tion of useful high-frequency features. Therefore, we further
show the ablation experiments on these two key components:
5) S-E → Plain Residual: Replacing the squeeze-and-expand
operation with a plain residual block (just including two
same convolution layers without successive downsampling and
upsampling).
6) w/o Attention: Removing the spatial attention operation
from ’Ours’.
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Fig. 11. Visualization of feature maps: (a) high-frequency feature map
captured by the squeeze-and-expand operation, (b) attention map, (c) feature
map highlighted by the attention operation. The first and second rows
represent the features at the stages K=1 and K=3 respectively.

Fig. 12. Visual comparison between the results of cascaded and parallel
backbone networks: (a) GT depth map; Results obtained by (b) cascaded
mode, (c) parallel mode.

As shown in Table VII, objective results verify that both
squeeze-and-expand and attention operations can contribute
to our final performance compared to our final configuration
(Ours). We also visualize the intermediate feature maps ob-
tained from our RB at the stages K=1 and K=3, respectively.
The squeeze-and-expand operation pays more attention on the
high-frequency features, and the attention can further highlight
the high-frequency locations through the attention map. Com-
pared between K=1 and K=3, the extracted features are more
obvious and clear at depth boundaries through progressive
refinement.

2) Effectiveness of Multi-scale Branch: To evaluate the
performance of multi-scale branch, we test the cases of our RB
with or without the multi-scale branch (MB) under different
number of MBA blocks. Color branches are also removed
from the whole network to facilitate the comparison. Table
VIII shows the qualitative results at 8× upsampling rate. The
case with MB presents lower MAD values for all the three
configurations of number of MBA blocks. Besides, For the
case K = 3, we further verifies the effectiveness of dense
connections (DC) employed by MB.

Moreover, though PMBANet consists of two parallel
branches, an alternative is to combine the RB and GB in a
cascaded manner, i.e., concatenating GB to the top of RB and
removing the fusion blocks. In the cascade model, the first
stage estimates the fidelity residuals while the second stage
estimates the prior residuals. However, as shown in Fig. 12 and
Table IX, the cascaded architecture does not generate high-
quality results compared to the parallel mode. Our parallel
architecture inherits the advantage of ensemble learning, which
can learn more effective features from each branch.

TABLE VIII
THE EFFECTIVENESS OF MULTI-SCALE BRANCH (8× CASE).

Method
MAD Values (the lower the better)

Art Books Dolls Laundry Moebius Reindeer

K=1

only RB 0.660 0.311 0.378 0.451 0.320 0.426
RB + MB 0.556 0.284 0.352 0.394 0.284 0.386

K=2

only RB 0.592 0.287 0.365 0.413 0.293 0.391
RB + MB 0.543 0.267 0.349 0.387 0.277 0.354

K=3

only RB 0.573 0.279 0.360 0.400 0.289 0.378
RB + MB (w/o DC) 0.536 0.275 0.351 0.392 0.274 0.382

RB + MB 0.529 0.270 0.344 0.387 0.268 0.364

TABLE IX
QUANTITATIVE EVALUATION OF DIFFERENT COMBINATION MODES

BETWEEN RB AND MULTI-SCALE BRANCH. (K = 3)

Method
MAD Values (the lower the better)

Art Books Dolls Laundry Moebius Reindeer
Cascade 0.566 0.284 0.353 0.390 0.283 0.379
Parallel 0.529 0.270 0.344 0.387 0.268 0.364

TABLE X
EFFECTIVENESS OF COLOR BRANCH ON EACH UPSAMPLING RATE.

Method
Average MAD Values

2× 4× 8× 16×
PMBANet w/o color branch 0.067 0.192 0.360 0.937

PMBANet 0.064 0.183 0.338 0.682

TABLE XI
QUANTITATIVE COMPARISONS UNDER DIFFERENT COMBINATION MODES

OF COLOR BRANCH (8× CASE).

Method
MAD Values (the lower the better)

Art Books Dolls Laundry Moebius Reindeer
PMBANet v1 0.529 0.270 0.344 0.387 0.268 0.364
PMBANet v2 0.542 0.271 0.350 0.387 0.274 0.355
PMBANet v3 0.536 0.271 0.348 0.386 0.273 0.366

PMBANet 0.508 0.263 0.318 0.340 0.264 0.335

3) Effectiveness of Color Branch: According to previous
analysis, color information brings significant improvement for
depth SR, but may introduce depth bleeding artifacts due to the
depth-color inconsistency. Here, we verify the suitability for a
given upsampling case to use color information as guidance.
As shown in Table X, we evaluate the role of color branch and
compute the average MAD values at each upsampling factor.
The results clearly show that color branch can offer significant
assistance and improve the performance about 16.4% and
27.2% for the 8× and 16× cases, respectively, but is almost no
helpful for the easily recovered 2× and 4× cases (only 4.5%
and 2.5% respectively). This is because that lower upsampling
cases are not damaged severely by downsampling degradation,
which is an easy inverse problem that can be solved by a
light-weight CNN to balance the accuracy and complexity.
Inappropriately integrating inconsistent color information may
lead to the decreased performance easily.

Furthermore, we also investigate the appropriate positions
to fuse the color information into the network. We choose the
8× upsampling rate, and test the following four cases, i.e.,
PMBANet without color branch (PMBANet v1), PMBANet
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Fig. 13. Visual comparison of different positions to fuse the color information
into the network (16× case). (a) Color patch; (b) GT; (c) PMBANet v1; (d)
PMBANet v3; (e) PMBANet.

TABLE XII
EFFECTIVENESS OF FUSION BLOCK.

Method
MAD Values (the lower the better )

Art Books Dolls Laundry Moebius Reindeer
w/o fusion 0.535 0.276 0.351 0.392 0.273 0.375
with fusion 0.529 0.270 0.344 0.387 0.268 0.364

that integrating color branch at the last MBA block (PM-
BANet v2), at the every MBA block (PMBANet v3) and at
the first MBA block (PMBANet, our final choice). As shown
in Table XI, PMBANet v2 and PMBANet v3 generate even
worse performance than PMBANet v1, which demonstrates
that the color information is not suitable to be introduced
for the last several blocks. Fig.13 further demonstrates this.
Without color guidance, PMBANet v1 cannot recover the
right structure of the objects. In contrast, there is some
improvement in shape retention for PMBANet v3, but the
depth bleeding artifacts around depth boundaries is obvious.
Therefore, we choose to integrate color branch only in the first
MBA block, and achieve the best results.

4) Effectiveness of Fusion Block: As shown in Table.
XII, we test the effectiveness of our fusion block. For the
case of ‘w/o fusion‘, we replace the fusion block by a simple
concatenation. With the aid of fusion strategy, the performance
has been slightly improved.

VI. VISUALIZATION AND DISCUSSION

Fig. 14 illustrates the PMBANet pipeline at the feature
level on 8× upsampling case. We visualize the output of
each branch at different stages to fully validate the capability
of each designed branch. For clearly presenting the feature
extraction process progressively, we increase the MPA blocks
up to K = 5. It is interesting to see that RB can effectively
enhance the features through iterative attention-based error
feed-forward and feedback mechanism, and finally focus on
extracting features at depth boundaries.

For multi-scale branch, it extracts the multi-scale feature
representation more efficiently, and pays more attention on
the fine structures and tiny objects obviously, e.g., the sticks
in feature map F 3

MB , which increase the probability to recover
the depth details from severe damages. Note that slight grid
artifacts appear in the feature map FK

MB due to the use
of dilated convolutions. Therefore, developing other effective
multi-scale methods to replace dilated convolutions would be
helpful in the future work.

For color branch, it provides a lot of prior knowledge to
reconstruct the depth details. As the data flows forward and
aggregates repeatedly, the helpful color features are selected

and retained. However, some undesired texture information
cannot be removed even in the last feature map, i.e., FK

CB ,
which may inhibit the improved performance for depth re-
construction. By watching FK

CB carefully, there are still some
inconsistent features, and the following fusion block cannot
eliminate the negative effects totally. Meanwhile, together with
the objective verification in Sec. V-C3, we conclude that color
information is only suitable to be introduced in the front
stages, in which the harmful color features can be slowly
discarded by successive data propagation and aggregation. In
future, our analysis can provide new insights for constructing
more sophisticated architectures.

VII. CONCLUSION

We propose a progressive multi-branch aggregation net-
work (PMBANet), which consists of stacked MBA blocks
to progressively recover the degraded depth map. Specifi-
cally, each MBA block has multiple parallel branches, i.e.,
a reconstruction branch (RB) and a guidance branch (GB)
including multiscale color sub-branches. A fusion block is
introduced to adaptively fuse and select the discriminative
features from all the branches. The design methodology of
our whole network is well-founded, and extensive experiments
on benchmark datasets demonstrate that our method achieves
superior performance in comparison with the state-of-the-art
methods.
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