
Optimization, 2016
Vol. 65, No. 4, 729–749, http://dx.doi.org/10.1080/02331934.2015.1064122

A spline smoothing homotopy method for nonconvex nonlinear
programming

Li Dongab, Bo Yua∗ and Guohui Zhaoa

aSchool of Mathematical Sciences, Dalian University of Technology, Dalian, P.R. China; bCollege
of Science, Dalian Nationalities University, Dalian, P.R. China

(Received 26 February 2014; accepted 5 June 2015)

Homotopy methods are globally convergent under weak conditions and robust;
however, the efficiency of a homotopy method is closely related with the con-
struction of the homotopy map and the path tracing algorithm. Different ho-
motopies may behave very different in performance even though they are all
theoretically convergent. In this paper, a spline smoothing homotopy method for
nonconvex nonlinear programming is developed using cubic spline to smooth
the max function of the constraints of nonlinear programming. Some properties
of spline smoothing function are discussed and the global convergence of spline
smoothing homotopy under the weak normal cone condition is proven. The spline
smoothing technique uses a smooth constraint instead of m constraints and acts
also as an active set technique. So the spline smoothing homotopy method is
more efficient than previous homotopy methods like combined homotopy interior
point method, aggregate constraint homotopy method and other probability one
homotopy methods. Numerical tests with the comparisons to some other methods
show that the new method is very efficient for nonlinear programming with large
number of complicated constraints.

Keywords: nonlinear programming; spline function; homotopy method; interior-
point method

AMS Subject Classifications: 90C30; 49M37

1. Introduction

In this paper, we consider the following nonlinear programming problem

min f (x),

s.t. g(x) ≤ 0,
(1)

where f : Rn → R and g : Rn → Rm . Let � = {x ∈ Rn|gi (x) ≤ 0, i = 1, . . . , m},
�0 = {x ∈ Rn|gi (x) < 0, i = 1, . . . , m}, ∂� = �\�0 and for any x ∈ �, B(x) = { j ∈
{1, 2, . . . , m}|g j (x) = 0}.

To our knowledge, if x∗ is a solution of (1) and the Abadie constraint qualification holds
at x∗, then there exists y∗ ∈ Rm , such that (x∗, y∗) is a solution of the following KKT
system of (1)

∗Corresponding author. Email: yubo@dlut.edu.cn

© 2015 Taylor & Francis

http://www.tandfonline.com

730 L. Dong et al.

∇ f (x) +
m∑

i=1
yi∇gi (x) = 0,

yi gi (x) = 0, yi ≥ 0, gi (x) ≤ 0, i = 1, . . . , m.

(2)

If (x̂, ŷ) is a solution of (2), then x̂ is called a KKT point of (1), and ŷ is called the Lagrangian
multiplier vector corresponding to x̂ .

For convex programming, the global convergence of the central path following methods
was proved under assumptions that the logarithmic barrier function was strictly convex and
the solution set was nonempty and bounded in [1–4]. A homotopy method for noncon-
vex nonlinear programming, which was called combined homotopy interior point method
(CHIP) proposed by Feng et al. [5], Feng and Yu [6], Lin et al. [7]. The global convergence
under the normal cone condition was proven. In [8,9], Yu et al. presented two modified CHIP
methods. These methods generalized the normal cone condition to so-called quasi normal
cone condition and pseudo cone condition, respectively. Based on the CHIP method, in [10],
Shang and Yu proposed a constraint shifting combined homotopy method (CSCH), which
could choose the initial point outside the feasible region, it could solve some problems that
did not satisfy the normal cone condition. The CSCH is easier to be constructed than the
modified CHIP.

In [11], Yu et al. constructed an aggregate constraint homotopy (ACH) using the so-
called aggregate function which was introduced in [12], the global convergence under the
weak normal cone condition was proven. The dimension of the linear systems arising in
the process of numerically tracing the homotopy path determined by the CHIP and CSCH
methods was n + m + 1 (where n is the number of variables, while m is the number of
constraints). In the situation of ACH method, the dimension became n + 2, this property
made this class method very efficient when m was very large.

In this paper, we present a new homotopy method called spline smoothing homotopy
(SSH) method for nonlinear programming (1) using cubic spline which was introduced in
[13] to smoothly approximate the min (or max) function. The smooth spline approximation
of the max function of the constraints involves only few constraints, so it acts also as an active
set technique, so it can improve the efficiency of the homotopy method. The approximation
properties, the C2,1 smoothness of smooth spline and the formulas of computing its gradient
and Hessian are given. These properties are necessary to make the smooth spline to keep
some conditions on constraints, which are necessary for proving the convergence of the
homotopy method. Under the weak normal cone condition, we prove that SSH method
determines a smooth interior path from a given interior point to a KKT point of the nonlinear
programming (1). For the sake of using a cubic spline function and not a quartic spline, a
parameterized version of the Sard’s theorem with Cr,1 smoothness hypothesis given in [14]
is used.

The rest of this paper is organized as follows. In Section 2, we give parameterized
Sard theorem with Cr,1 smoothness. In Section 3, we give some properties of cubic spline
to smooth max functions and the formulas of computing its gradient and Hessian. In
Section 4, we give the spline smoothing homotopy and prove some propositions and main
theorem on the existence of a smooth path from a given interior point to a KKT point.
In Section 5, a procedure for tracking the homotopy path is listed and several numerical
examples with some remarks on the numerical results are given.

Optimization 731

2. Parameterized Sard theorem with C r,1 smoothness

To develop our main result, we need the following definitions, lemmas and theorems which
are from differential topology.

Definition 1 Let U ⊂ Rn be an open set, and f : U → R p be a smooth mapping. We say
y ∈ R p is a regular value for f , if

Range

[
∂ f (x)

∂x

]
= R p, ∀x ∈ f −1(y).

Lemma 2.1 (Lemmas 5–27, [15]) If 0 is a regular value of the mapping fa, then f −1
a (0)

consists of some smooth manifolds.

Lemma 2.2 (Theorems 5–30, [15]) A one-dimensional smooth manifold is diffeomor-
phic to a unit circle or a unit interval.

Definition 2 A map f ∈ Cr (Rn, Rm) is said to belong to Cr,1 if Dr f is locally Lipschitz
on Rn .

The following parameterized Sard theorem is commonly used for proving the regularity
of a homotopy.

Theorem 2.3 (Parameterized Sard Theorem [16]) Let U ⊂ Rm and V ⊂ Rn be two
open sets, and f : U × V → Rk be an Cr differentiable map with r > max{0, m − k}.
If 0 ∈ Rk is a regular value of f , then for almost all a ∈ V , 0 is a regular value of
fa = f (a, ·).

In this paper, in order to use a spline function with degree as low as possible, namely
S2

3 , in SSH, we use the following parameterized Sard theorem with Cr,1 smoothness.

Theorem 2.4 Let U ⊂ Rm and V ⊂ Rn be two open sets, and f : U × V → Rk be an
Cr,1 differentiable map with m > k and r ≥ max{1, m − k}. If 0 ∈ Rk is a regular value
of f , then for almost all a ∈ V , 0 is a regular value of fa = f (a, ·).

Theorem 2.4 can be proven similarly to the parameterized Sard theorem in [16] using
the following theorem in [14].

Theorem 2.5 (Theorem 1, [14]) Let n, m be positive integers with n > m and
r = n − m. If f ∈ Cr,1(Rn, Rm), then the set of critical values of f has m-measure
zeros.

3. Cubic spline which uniformly approximates max functions

We formulated Problem (1) equivalently as

min f (x),

s.t. gmax(x) ≤ 0,
(3)

732 L. Dong et al.

with a single but nonsmooth constraint gmax(x) = max1≤i≤m{gi (x)}. We consider to
approximate smoothly gmax(x) by the cubic spline introduced in [13] and will use the spline
smooth approximation ĝ(x, t) to construct a homotopy, called spline smoothing homotopy,
to solve (1).

In this section, we will introduce the definition of ĝ(x, t), prove its approximation
properties, the C2,1 smoothness and give the formulas of its gradient and Hessian. In the
next section, we will prove that ĝ(x, t) can keep some conditions on g(x), which are
necessary for proving the convergence of the homotopy method.

Let us first recall the formulation of multivariate spline. Let D be a polyhedral domain
of Rn which is partitioned with irreducible algebraic surfaces into cells
 = {
i |i =
1, . . . , N }. A function s(x) defined on D is called a k-spline function with r th order
smoothness, expressed for short as s(x) ∈ Sr

k (D,
), if s(x) ∈ Cr (D) and s(x)|
i =
pi ∈ Pk , where Pk is the set of all polynomial of degree k or less in n variables.

In [13], Zhao et al. constructed the homogenous Morgan-Scott partition of type two
and a cubic spline S2

3(x) ∈ C2 to approximate min{x1, x2, . . . , xn} uniformly, where x =
(x1, x2, . . . , xn)T ∈ Rn . Now let us introduce it.

Let M = (−m̄,−m̄, . . . ,−m̄)T ∈ Rn , Pi = (0, . . . , 0, m̄, 0, . . . , 0)T ∈ Rn , where
m̄ > 0, 1 ≤ i ≤ n. Points M, P1, P2, . . . , Pn define a n-simplex, namely V . Let Ei =
(ε, . . . , ε, 0, ε, . . . , ε)T ∈ Rn ,1 ≤ i ≤ n, 0 < ε < m̄. Let P ′

i be the intersection points
of line M Ei with the hyperplane passing P1, P2, . . . , Pn . Furthermore, join points Pi and
P ′

j (j ∈ � = {1, 2, . . . , n}), P ′
j and P ′

k (j, k ∈ � and k �= j) with straight lines. These

lines intersect at the following points: P ′
i1,...,ik

=
k∑

j=1
P ′

i j
/k where i j ∈ �. All these points

can define a triangular partition of V , with cells Pin . . . Pik+1 M P ′
i1

. . . P ′
i1...ik

. It is obvious
that V turns into Rn when m̄ → +∞ and the above triangular partition of V turns into a
partition of Rn , namely homogenous Morgan-Scott partition of type 2 and is denoted by

̄2

M S , with cells
̄i1...ik , the limit of Pin . . . Pik+1 M P ′
i1

. . . P ′
i1...ik

, which is defined by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xil − xil+1 ≤ 0, 1 ≤ l < k, 1 ≤ k ≤ n,
k−1∑
j=1

xi j − (k − 1)xil + ε ≥ 0, l = k, 1 ≤ k ≤ n,

k∑
j=1

xi j − kxil + ε ≤ 0, k + 1 ≤ l ≤ n, 1 ≤ k ≤ n.

The C2 cubic spline S2
3(x) ∈ S2

3(Rn,
̄2
M S) which approximates uniformly min{x1,

x2, . . . , xn} (as ε → +0) was defined in [13] as

S2
3(x1, x2, . . . , xn) = xi1 +

k−1∑
l=1

Cl

⎛⎝ l∑
j=1

xi j − lxil+1 + ε

⎞⎠3

, for x ∈
̄i1...ik (ε),

where C1 = −1/(6ε2), Ck/Ck+1 = (k + 2)/k, 1 ≤ k ≤ n.
Because max{z1, z2, . . . , zm} = − min{−z1,−z2, . . . ,−zm}, we can approximate uni-

formly max{z1, z2, . . . , zm} (as ε → +0) by the following C2 cubic spline function
s2

3(z; ε) ∈ S2
3(Rm,
2

M S).

Optimization 733

s2
3(z1, z2, . . . , zm; ε) = zi1 +

k−1∑
l=1

cl

⎛⎝lzil+1 −
l∑

j=1

zi j + ε

⎞⎠3

, for z ∈
i1...ik (ε),

where c1 = 1/(6ε2), ck/ck+1 = (k + 2)/k, 1 ≤ k ≤ m. The cell
i1...ik (ε) is the region
defined by the following inequalities⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zil − zil+1 ≥ 0, when 1 ≤ l < k,

(k − 1)zik −
k−1∑
j=1

zi j + ε ≥ 0,

kzil −
k∑

j=1
zi j + ε ≤ 0, when k + 1 ≤ l ≤ m.

The composite function ĝ(x, t) approximates uniformly max{g1(x), g2(x), . . . , gm(x)}
as t → +0, where

ĝ(x, t) = s2
3(g1(x), g2(x), . . . , gm(x); t), for x such that

(g1(x), g2(x), . . . , gm(x)) ∈
i1...ik (t).
(4)

Proposition 3.1 For any t > 0, when g(x) ∈
i1...ik (t), the following results hold:

(a) gmax(x) = gi1(x);

(b) gmax(x) ≤ ĝ(x, t) ≤ gmax(x) + t

3

(
1 − 1

k

)
.

Proof

(a) According to the definition of the cell
i1...ik (t), we can obtain that g(x) ∈
i1...ik (t)
iff ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gi1(x) − gi2(x) ≥ 0,

gi2(x) − gi3(x) ≥ 0,

. .
gik−1(x) − gik (x) ≥ 0,

(k − 1)gik (x) −
k−1∑
j=1

gi j (x) + t ≥ 0,

kgik+1(x) −
k∑

j=1
gi j (x) + t ≤ 0,

. .

kgim (x) −
k∑

j=1
gi j (x) + t ≤ 0.

(5)

From the first (k − 1) inequalities in (5), we know gi1(x) ≥ gi j (x) (1 ≤ j ≤ k).
From the kth inequality in (5), we have

k−1∑
j=1

gi j (x) − (k − 1)gik (x) − t ≤ 0. (6)

734 L. Dong et al.

Add (6) on the (k + 1)-th inequality in (5), we can obtain gik (x) ≥ gik+1(x).
Similarly, we have gik (x) ≥ gi j (x), j ∈ {k + 1, k + 2, . . . , m}. So, we have proven
gmax(x) = gi1(x).

(b) Instead of the l-th to the (k −1)th inequality in (5), where 1 ≤ l < k, we use another
set of inequalities: ⎧⎪⎪⎨⎪⎪⎩

lgil (x) − lgik (x) ≥ 0,

gil+1(x) − gik (x) ≥ 0,

.
gik−1(x) − gik (x) ≥ 0.

(7)

By summing up all inequalities in (7) and the k-th inequality in (5) and from gi j (x) ≥
gil (x), j ∈ {1, 2, . . . , (l − 1)}, we can obtain 0 ≤ (l − 1)gil (x) −∑l−1

j=1 gi j (x) +
t ≤ t . Because cl ≥ 0, we have 0 ≤ cl((l − 1)gil (x) − ∑l−1

j=1 gi j (x) + t)3 ≤
cl t3. According to the definition of ĝ(x, t) and conclusion (a), we have gmax(x) ≤
ĝ(x, t) ≤ gmax(x) + ∑k−1

l=1 cl t3. By cl/cl+1 = (l + 2)/ l, we can obtain cl =
(2/(l(l + 1)))c1 = 1/(3l(l + 1)t2). Thus

∑k−1
l=1 cl t3 = (t/3)(1 − (1/k)). The

proof is completed. �

Proposition 3.2 For any x ∈ ∂�, let B(x) = {i1, . . . , ik}. Then, when t is sufficiently
small, we have g(x) ∈
i1...ik (t).

Proof It is easy to see that when t is sufficiently small, (5) holds and hence g(x) ∈

i1...ik (t). �

Proposition 3.3

(a) The gradient of ĝ about x, at (x, t) such that g(x) ∈
i1...ik (t), is

∇x ĝ(x, t) =
m∑

i=1

λi (x, t)∇gi (x) =
k∑

j=1

λi j (x, t)∇gi j (x), (8)

where

λi j (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 3
k−1∑
l=1

cl(hl(x, t))2, for j = 1,

3(j − 1)c j−1(h j−1(x, t))2 − 3
k−1∑
l= j

cl(hl(x, t))2, for 2 ≤ j < k,

3(k − 1)ck−1(hk−1(x, t))2, for j = k,

0, for k < j ≤ m,

(9)

and hl(x, t) = lgil+1(x) −∑l
r=1 gir (x) + t;

(b) For any x ∈ � and t > 0, λi (x, t) ≥ 0 (1 ≤ i ≤ m) and
m∑

i=1
λi (x, t) = 1.

Proof

(a) Through some calculations, we may obtain the conclusion.

Optimization 735

(b) Suppose without loss of generality that g(x) ∈
i1...ik (t), from the proof of the
Proposition 3.1, we know 0 ≤ cl(lgil+1(x) −∑l

j=1 gi j (x) + t)2 ≤ cl t2 and cl =
1/(3l(l + 1)t2). So we have

λi1(x, t) = 1 − 3
k−1∑
l=1

cl(hl(x, t))2 ≥ 1 − 3
k−1∑
l=1

cl t
2 = 1 − 3t2c1

k−1∑
l=1

2

(l + 1)l

= 1 − 6t2c1

(
1 − 1

k

)
= 1

k
> 0,

λi j (x, t) = 3(j − 1)c j−1(h j−1(x, t))2 − 3
k−1∑
l= j

cl(hl(x, t))2

≥ 3(j − 1)c j−1(h j−1(x, t))2 − 3(h j−1(x, t))2
k−1∑
l= j

cl

= 3(j − 1)c j−1(h j−1(x, t))2 − 3 j (j − 1)(h j−1(x, t))2c j−1

k−1∑
l= j

1

(l + 1)l

= 3(j − 1)c j−1(h j−1(x, t))2 − 3 j (j − 1)(h j−1(x, t))2c j−1

(
1

j
− 1

k

)
= 3 j (j − 1)c j−1(h j−1(x, t))2 1

k
≥ 0, for 2 ≤ j < k,

λik (x, t) = 3(k − 1)ck−1(hk−1(x, t))2 ≥ 0.

Together with λi j (x, t) = 0, when k < j ≤ m, we have λi (x, t) ≥ 0 for 1 ≤ i ≤ m.
From (9), we have

m∑
i=1

λi (x, t) =
k∑

j=1

λi j (x, t) = 1 − 3

(
k−1∑
l=1

cl(hl(x, t))2 − c1(h1(x, t))2

+
k−1∑
l=2

cl(hl(x, t))2 − 2c2(h2(x, t))2 + · · · +
k−1∑

l=k−2

cl(hl(x, t))2

−(k − 2)ck−2(hk−2(x, t))2 − (k − 2)ck−1(hk−1(x, t))2
)

= 1.

�

Proposition 3.4 If g(x) ∈ C2,1, then for g(x) ∈
i1...ik (t)

(a) ∇2
x ĝ(x, t) =

k∑
j=1

λi j (x, t)∇2gi j (x) +
k∑

j=1

(
k∑̆

j=1
ξ j,j̆ (x, t)∇gij̆ (x))(∇gi j (x)

)T

,

where

736 L. Dong et al.

ξ1,j̆ (x, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
6

k−1∑
l=1

cl(hl(x, t)) when j̆ = 1,

−6(j̆ − 1)cj̆−1(h j̆−1(x, t)) + 6
k−1∑
l=j̆

cl(hl(x, t)) when 2 ≤ j̆ < k,

−6(k − 1)ck−1(hk−1(x, t)) when j̆ = k.

ξ j,j̆ (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6(j − 1)c j−1(h j−1(x, t)) + 6
k−1∑
l= j

cl(hl(x, t)) when 1 ≤ j̆ < j,

−6(j̆ − 1)cj̆−1(h j̆−1(x, t)) + 6
k−1∑
l=j̆

cl(hl(x, t)) when j < j̆ < k,

6(j̆ − 1)2cj̆−1(h j̆−1(x, t)) + 6
k−1∑
l=j̆

cl(hl(x, t)) when j̆ = j,

−6(k − 1)ck−1(hk−1(x, t)) when j̆ = k, for 2 ≤ j < k,

ξk,j̆ (x, t) =
{−6(k − 1)ck−1(hk−1(x, t)) when 1 ≤ j̆ < k,

6(k − 1)2ck−1(hk−1(x, t)) when j̆ = k.

(b) ĝ(x, t) is an C2,1 function for t > 0.

Proof

(a) Through some calculations, we may obtain the conclusion.
(b) For s1(z; ε) ∈ S1(Rn,
2

M S), we know s1(z; ε) is Lipschitz. For the convenience of
the reader, we prove it. The cell of
2

M S is denoted by
̃i (ε) (1 ≤ i ≤ ∑n
k=1 Ck

n k!)
and let s1i (z; ε) = ai,0(ε) + ∑n

j=1 ai, j (ε)z j for z ∈
̃i (ε). ∀z′, z′′ ∈ Rn , sup-
pose without loss of generality, let z′ ∈
̃i1(ε), z′′ ∈
̃is+1(ε), then we take
the intersection points qi1 , qi2 , . . . , qis of line z′z′′ with Qi1 , Qi2 , . . . , Qis , where
Qi j (1 ≤ i j <

∑n
k=1 Ck

n k!) is adjacent plan of two cells
̃i j (ε) and
̃i j+1(ε). So
we have s1i j

(qi j) = s1i j+1
(qi j) (1 ≤ j ≤ s) and ‖z′ − qi1‖ + ‖qi1 − qi2‖ + · · · +

‖qis−1 − qis ‖ + ‖qis − z′′‖ = ‖z′ − z′′‖. Then

‖s1i1
(z′) − s1is+1

(z′′)‖ ≤ ‖s1i1
(z′) − s1i1

(qi1)‖ + ‖s1i2
(qi1) − s1i2

(qi2)‖ + · · ·
+ ‖s1is

(qis−1) − s1is
(qis)‖ + ‖s1is+1

(qis) − s1is+1
(z′′)‖

≤ Li1‖z′ − qi1‖ + Li2‖qi1 − qi2‖
+ · · · + Lis ‖qis−1 − qis ‖ + Lis+1‖qis − z′′‖

≤ L(‖z′ − qi1‖ + ‖qi1 − qi2‖ + · · ·
+ ‖qis−1 − qis ‖ + ‖qis − z′′‖)

= L‖z′ − z′′‖,
where L = max{Li1 , Li2 , . . . , Lis+1}.

From the definition of ξ j,j̆ (x, t)(1 ≤ j ≤ k), we know it is the composite function of
s1(z; ε) and g(x). Due to g(x) ∈ C2,1 and s1(z; ε) is Lipschitz, we obtain ∇2

x ĝ(x, t) is
locally Lipschitz on �. Then it is easy to prove ĝ(x, t) ∈ C2,1 for t > 0. �

Optimization 737

4. Spline smoothing homotopy and homotopy path

In this paper, the following assumptions are made:

(A1) f (x) ∈ C2,1 and g(x) ∈ C2,1;
(A2) �0 is nonempty, � is bounded;
(A3) For any x ∈ ∂�, {∇gi (x)|i ∈ B(x) = {i |gi (x) = 0}} are positive independent, i.e.∑

i∈B(x)λi∇gi (x) = 0, λi ≥ 0 ⇒ λi = 0;
(A4) (The weak normal cone condition of � w.r.t. �̂.) There exists a closed subset

�̂ ⊂ �0 with nonempty interior �̂0, such that for any given x ∈ ∂�,

{x +
∑

i∈B(x)

λi∇gi (x) : λi ≥ 0,
∑

i∈B(x)

λi > 0} ∩ �̂ = ∅.

Let �θ(t) = {x ∈ Rn|ĝθ (x, t) ≤ 0}, �θ(t)0 = {x ∈ Rn|ĝθ (x, t) < 0}, where ĝθ (x, t) =
ĝ(x, θ t) defined by (4).

Proposition 4.1 Under assumptions (A1) and (A2), we have

(a) For any given θ ∈ (0, 1] and t ∈ (0, 1], �θ(t) ⊂ �;
(b) For any closed subset Q ⊂ �0, there exists a θ ∈ (0, 1], such that Q ⊂ �θ(1)0.

Proof

(a) For ∀x ∈ �θ(t), by Proposition 3.1 (b)

gmax(x) ≤ (̂g)θ (x, t) ≤ 0,

this means that x ∈ �, so we have �θ(t) ⊂ �.
(b) Because Q is bounded and closed and gmax(x) is continuous, there exists a point

x (0) ∈ Q at which gmax(x) reaches its maximum in Q, and gmax
(
x (0)

)
< 0. Let

θ̃ = min{−3khmax
(
x (0)

)
/(2(k − 1)), 1}, then by Proposition 3.1 (b), for any x ∈ Q

ĝθ (x, 1) ≤ gmax(x) + θ̃

3

(
1 − 1

k

)
≤ gmax

(
x (0)

)
+ θ̃

3

(
1 − 1

k

)
= 1

2
gmax

(
x (0)

)
< 0,

which means that x ∈ �θ(1)0. Since ∀x ∈ Q, we have Q ⊂ �θ(1)0. �

Proposition 4.2 If assumptions (A1)–(A3) hold, then there exists a θ ∈ (0, 1] such that
the boundary of �θ(t) is regular for any t ∈ (0, 1], i.e. ∀x ∈ ∂�θ(t), ∇x ĝθ (x, t) �= 0.

738 L. Dong et al.

Proof If the conclusion is not true, suppose that there exist sequences {x (k)}∞k=1 ∈ � and
{tk}∞k=1 > 0, such that tk → 0, as k → ∞, ĝθ (x (k), tk) = 0, and

∇x ĝθ (x (k), tk) =
m∑

i=1

λi (x (k), tk)∇gi (x (k)) = 0.

By Proposition 3.3, there exist subsequences of {x (k)}∞k=1 and {λi (x (k), tk)}∞k=1 (without
loss of generality, the sequences themselves) which converges, respectively, to some x̄ and
λ̄ j . Moreover, λ̄ j = 0 for j /∈ B(x̄).

By taking limits, we get

gmax(x̄) = 0,
∑

i∈B(x̄)

λ̄i∇gi (x̄) = 0,
∑

i∈B(x̄)

λ̄i = 1,

which contradicts assumption (A3). �

Proposition 4.3 If assumptions (A1)–(A4) hold, then for any closed subset N ⊂ �̂,
there exists a θ ∈ (0, 1] such that for any t ∈ (0, 1] �θ(t) satisfies the weak normal cone
condition w.r.t. N.

Proof If the conclusion is not true, suppose that there exist sequences {tk}∞k=1 > 0,
{x̄ (k)}∞k=1 ∈ �, {x̂ (k)}∞k=1 ∈ Q, and {λ(k)}∞k=1 > 0 such that tk → 0 as k → ∞,
ĝθ (x̄ (k), tk) = 0, and

x̂ (k) = x̄ (k) − λ(k)∇x ĝθ

(
x̄ (k), tk

)
= x̄ (k) − λ(k)

m∑
i=1

λi

(
x̄ (k), tk

)
∇gi

(
x̄ (k)

)
,

where λi (x̄ (k), tk) ≥ 0 and
∑m

i=1 λi (x̄ (k), tk) = 1.
By taking limits, we get x̂ = x̄ − λ̄

∑
i∈B(x̄) λ̄i∇gi (x̄). It is easy to prove that x̄ ∈ ∂�

and x̂ ∈ Q ⊂ �̂, x̂ �= x̄ . This contradicts to assumption (A4). �

Using the single smooth constraint ĝθ (x, t), we construct the following SSH

H(w(0), w, t) :=
(

(1 − t)(∇ f (x) + λ∇x ĝθ (x, t)) + t (x − x (0))

λĝθ (x, t) − tλ(0)ĝθ (x (0), 1)

)
= 0, (10)

where w = (x, λ), w(0) = (x (0), λ(0)), x (0) ∈ �̂0, λ(0) > 0.
For a given w(0) ∈ �̂0 × R1++, we rewrite H(w(0), w, t) in (10) as Hw(0) (w, t). Let

H−1
w(0) (0) = {(w, t) ∈ � × R1+ × (0, 1]|Hw(0) (w, t) = 0}.

Proposition 4.4 Suppose that assumptions (A1) and (A3) hold, then 0 is a regular value
of Hw(0) for almost all w(0) ∈ �̂0 × R1++, and H−1

w(0) (0) consists of some smooth curves,
one of which starts at (w(0), 1).

Optimization 739

Proof For any w(0) ∈ �̂0 × R1++, and t ∈ (0, 1],
∂ H(w(0), w, t)

∂w(0)
=
(−t I 0

−tλ(0)∇x ĝθ (x (0), 1) −t ĝθ (x (0), 1)

)
,

where I is an identity matrix. By a simple calculation,∣∣∣∣∣∂ H(w(0), w, t)

∂w(0)

∣∣∣∣∣ = (−1)n+1tn+1ĝθ

(
x (0), 1

)
.

From x (0) ∈ �̂0, we get that ĝθ (x (0), 1) �= 0. Thus∣∣∣∣∣∂ H
(
w(0), w, t

)
∂w(0)

∣∣∣∣∣ �= 0.

As a mapping of (w(0), w, t), the Jacobin matrix of H(w(0), w, t) is of full row rank, this
means that 0 is a regular value of H(w(0), w, t). By Proposition 3.4, H(w(0), w, t) is an
C2,1 map, we get that 0 is a regular value of the mapping Hw(0) (w, t) using the Theorem 2.4.
By Lemma 2.1, H−1

w(0) (0) consists of some smooth manifolds. Because Hw(0) (w(0), 1) = 0,
there must be a smooth curve
w(0) starting at (w(0), 1). �

We give the following main theorem on the existence of the smooth path from any
interior point x (0) ∈ �̂0 to a solution of the KKT system (2) of (1).

Theorem 4.5 If assumptions (A1)–(A4) hold, H is defined by (10), then for any x̂ ∈ �̂0,
there exists an open neighbourhood N (x̂) of x̂ such that N (x̂) ⊂ �̂0, and there exists a
θ ∈ (0, 1] such that N (x̂) ⊂ �θ(1)0, ∂�θ (t) is regular and �θ(t) satisfies the weak normal
cone condition w.r.t. N (x̂) for any t ∈ (0, 1]. Furthermore, for almost all x (0) ∈ N (x̂)

and λ(0) > 0, H−1
w(0) (0) contains a bounded smooth cure
w(0) starting at (w(0), 1) and

terminates in or approaches to the hyperplane t = 0. Moreover, let (x∗, λ∗, t∗) be any limit
point of
w(0) on the hyperplane t = 0, then x∗ is a KKT point of (1).

Proof By Propositions 4.1–4.3, we can easily see that, for any x̂ ∈ �̂0, there exists a
neighbourhood N (x̂) of x̂ such that N (x̂) ⊂ �̂0, and there exists a θ ∈ (0, 1] such that
N (x̂) ⊂ �θ(1)0, ∂�θ (t) is regular and �θ(t) satisfies the weak normal cone condition
w.r.t. N (x̂) for any t ∈ (0, 1]. By the Propositions 4.4, for almost all x (0) ∈ N (x̂) and
λ(0) > 0, 0 is a regular value of Hw(0) (w, t) : � × R1+ × (0, 1] → Rn+1. For given
w(0) ∈ �̂0 × R1++, if 0 is a regular value of Hw(0) (w, t) : � × R1+ × (0, 1] → Rn+1,

from the fact that Hw(0) (w(0), 1) = 0, the nonsingularity of ∂ H(w(0),w,1)
∂(w)

|w=w(0) and the

implicit function theorem, we know that H−1
w(0) (0) consists of a smooth curve
w(0) , which

starts at (w(0), 1) and goes into �θ(t)0 × R1++ × (0, 1) and terminates in the boundary of
� × R1+ × (0, 1].

Let (x̄, λ̄, t̄) ∈ � × R1+ × [0, 1] be an ending limit point of
w(0) . Only the following
five cases are possible :

(1) (x̄, λ̄, t̄) ∈ � × R1+ × {0} and λ̄ < +∞;
(2) (x̄, λ̄, t̄) ∈ �θ(1) × R1+ × {1} and λ̄ < +∞;

740 L. Dong et al.

(3) (x̄, λ̄, t̄) ∈ �θ(t̄) × {+∞} × [0, 1];
(4) (x̄, λ̄, t̄) ∈ ∂�θ (t̄) × R1++ × (0, 1) and λ̄ < +∞;
(5) (x̄, λ̄, t̄) ∈ �θ(t̄) × {0} × (0, 1).

Because Hw(0) (w, 1) = 0 has only one solution (x (0), λ(0)) in � × R1+, case (2) is
impossible. By the continuity of
 and the second equality of (10), we know that cases (4)
and (5) are impossible.

Using Propositions 4.2 and 4.3, similar to the proof of Theorem 2.9 of Yu et al. [11], we
can prove case (3) is impossible.

As a conclusion, case (1) is the only possible case. That is
w(0) must be bounded and
approach to the hyperplane at t = 0.

By the boundedness of x , λ for Hw(0) (x, λ, t) = 0 and t ∈ (0, 1] and 0 ≤ λi (x, t) ≤ 1
in Proposition 3.2(b), we know (x, λ, λ1(x, t), . . . , λm(x, t)) has at least one accumulation
point as t → 0+. Let (x∗, λ∗, λ∗

1, . . . , λ
∗
m) be an accumulation point of (x, λ, λ1(x, t), . . . ,

λm(x, t)) and y∗
i = λ∗λ∗

i , by (1) we have

∇ f (x∗) +
m∑

i=1

y∗
i ∇x ĝi (x∗) = 0.

From gi (x) ≤ ĝθ (x, t) ≤ 0, λ > 0 and λi (x, t) ≥ 0 for t ∈ (0, 1] and Hw(0) (x, λ, t) = 0,
we have gi (x∗) ≤ 0 and λ∗

i ≥ 0. If x∗ ∈ �0, then limx→x∗,t→0+ ĝθ (x, t) = gmax(x∗) < 0.
and then by the second equality of (10) λ∗ = 0, else x∗ ∈ ∂�, limx→x∗,t→0+ ĝθ (x, t) =
gmax(x∗) = 0 by the Proposition 3.3 (b), λ∗

i = 0 for i /∈ B̄(x∗). Thus, we have that
y∗

i g∗
i (x∗) = 0 for 1 ≤ i ≤ m.
We get that (x∗, y∗

1 , . . . , y∗
m) is a solution of (2), which means that x∗ is a KKT point

of (1) and y∗
1 , . . . , y∗

m are corresponding Lagrangian multipliers. �

5. The SSH-S-N procedure and numerical experiments

5.1. The SSH-S-N procedure

In this section, we give a predictor-corrector algorithm – SSH-S-N procedure to trace the
path generated by the spline smoothing homotopy, in which secant predictor and Newton
corrector steps are used.

The first predictor step is tangent predictor, other predictor steps are secant predictor. Step
length is adjusted according to the angle between current and previous predictor directions
and the times of iteration of previous corrector step. The corrector step is Newton corrector
along with the direction that vertical to the predictor director. Particularly, in order to improve
the efficiency of SSH-S-N, the algorithm includes an end game strategy, in which we use
the standard Newton’s method to solve

F(θ,tc)(x, λ) =
(∇ f (x) + λ∇x ĝθ (x, tc)

λĝθ (x, tc)

)
= 0,

where tc is a small positive constant.

Optimization 741

Algorithm 5.1 (the SSH-S-N procedure)

Step 0: Give θ ∈ (0, 1], tend and tc, starting point w(0) ∈ �̂0 × R1++, initial step
length h1, step contraction factors Bmin, step expansion factors Bmax, tracking
tolerances Htol and H f inal for correction.

Step 1: Let t0 = 1, enter Subroutine 5.1, compute H ′
w(0) (w

(0), t0). Let d(0) = (0, . . . ,

0,−1) ∈ Rn+2, compute the predictor direction d by solving the following
system of equation: (

H ′
w(0) (w

(0), t0)

d(0)T

)
d = −d(0),

set d(1) = d
‖d‖ , k = 1, Ngood = 2, goto Step 4.

Step 2: (predictor step) Compute the predictor direction d(k) =
(w(k−1),tk−1)−(w(k−2),tk−2)

‖(w(k−1),tk−1)−(w(k−2),tk−2)‖ , the angle between the current and the last predictor

directions β(k) = arccos((d(k))T d(k−1)).
Step 3: If corrector step fail or βk > π/4, set hk = Bmin(1)hk−1, Ngood = 0.

If i ≥ 5, set hk = Bmin(2)hk−1, Ngood = 0.
If i = 4, set hk = hk−1, Ngood = Ngood + 1.
If i = 3, set Ngood = Ngood + 1.
If Ngood > 2, set hk = min(1, Bmax(2)hk−1).
If i ≤ 2, set Ngood = Ngood + 1.
If Ngood > 2, set hk = min(1, Bmax(1)hk−1).

Step 4: If hk < 10−10, stop the algorithm with an error flag,
Else compute the predictor point (w(k,0), tk,0) = (w(k−1), tk−1) + hkd(k), set
i = 0.

Step 5: If tk,0 ≤ tend , adjust step length hk , compute a new predictor point (w(k,0), 0).
If w(k,0) is feasible, set l = 0, goto the end game.

Step 6: (corrector step) If i = 5, w(k) = w(k−1), tk = tk−1, d(k+1) = d(k), replace k
by k + 1, goto Step 3,
Else, enter Subroutine 5.1, compute H ′

w0(w
(k,i), tk,i) and then compute the

corrector direction d(k,i+1) by(
H ′

w(0) (w
(k,i), tk,i)

dk T

)
d(k,i+1) =

(−Hw(0) (w(k,i), tk,i)

0

)
,

compute the corrector point

(w(k,i+1), tk,i+1) = (w(k,i), tk,i) + d(k,i+1),

replace i by i + 1.
Step 7: If tk,i ≥ 1 or w(k,i) is infeasible, w(k) = w(k−1), tk = tk−1, d(k+1) = d(k),

replace k by k + 1, the corrector step fails, goto Step 3.
If tk,i < 0, adjust the step length, compute a new predictor point (w(k,0), 0).
If w(k,0) is feasible, set l = 0, goto the end game,
Else set w(k) = w(k−1), tk = tk−1, d(k+1) = d(k), replace k by k + 1, the
corrector step fails, goto Step 3.

Step 8: If ‖d(k,i)‖ > Htol and ‖Hw(0) (w(k,i), tk,i)‖inf > Htol , goto Step 6,

742 L. Dong et al.

Else w(k) = w(k,i), tk = tk,i , if tk < tc, return with x∗ = x (k−1), stop the
algorithm,
Else set Htol = min{Htol , tk}, replace k by k + 1, goto Step 2.

Step 9: (the end game) Enter Subroutine 5.1, compute F(θ,tc)(w
(k,l)), F ′

(θ,tc)
(w(k,l))

and then computer d(k,l+1) = −(F ′
(θ,tc)

(w(k,l)))−1 F(θ,tc)(w
(k,l)), the corrector

point w(k,l+1) = w(k,l) + d(k,l+1), replace l by l + 1.
Step 10: If ‖F(θ,tc)(w

(k,l))‖in f ≤ H f inal , ‖d(k,l)‖ ≤ H f inal , return with x∗ = x (k,l),
stop the algorithm.

Step 11: If l = 5 or ‖d(k,l)‖ > ‖d(k,l−1)‖, set tend = 0.3 × tend , w(k) = w(k−1),
tk = tk−1, d(k+1) = d(k), replace k by k + 1, goto Step 3,
Else goto step 9.

Subroutine 5.1 (Search the cell).

substep 1: Let Ī = { j |gmax(x (k,i)) − g j (x (k,i)) < θ tk,i }, k̄ be the cardinality of Ī ,
and Ī = {i1, i2, . . . , ik̄}. Range {gi j (x (k,i))}k̄

j=1 according to gi1(x (k,i)) ≥
gi2(x (k,i)) ≥ . . . ≥ gik̄

(x (k,i)).
substep 2: If k̄ = 1, the cell is
i1(θ tk,i),

Else, if (k̃ − 1)gik̃
(x (k,i)) − ∑k̃−1

j=1 gi j (x (k,i)) + θ tk,i ≥ 0 for every k̃ ∈
{k̄, k̄ − 1, . . . , 2}, we have k̃ ∈ I ⊆ {k̄, k̄ − 1, . . . , 2}.

substep 3: Set k̂ is the maximum element of I , then the cell is
i1...ik̂
(θ tk,i), and exists

Subroutine 5.1.

5.2. Numerical experiment

We have implemented the SSH-S-N algorithm using the MATLAB. In order to show the
efficiency of the algorithm, we have also implemented CHIP, ACH methods using similar
procedures. We compare these algorithms with KNITRO which is a solver for large nonlinear
optimization, where KNITRO provides three state-of-art algorithms for solving problems
and active set algorithm is suitable for solving nonlinear programming problem with many
constraints. We choose it and its parameters as default values. We choose problem 5.1 from
the CUTEr test set [17], problem 5.2 in [18], two problems 5.3 and 5.4 in [19], problems
5.5 in [20] and give problem 5.6, respectively.

The test results were obtained by running MATLAB R2011a on a desktop with Windows
XP Professional operation system, Intel(R) Core(TM) i3-370 2.40 GHz processor and 2.92
GB of memory. The default parameters are chosen as follows:

Table 1. Test results for Example 5.1.

Method f (x∗) gmax(x∗) Time

CHIP −0.999887528714237 −8.7260e-005 22.7158
ACH −0.999999968425505 −3.1574e-008 1.0125
KNITRO −0.999999982183160 2.4583e-011 0.6060
SSH −1.0000 0.0000 0.2589

Optimization 743

Table 2. Test results for Example 5.2.

m Method f (x∗) gmax(x∗) Time

CHIP 1.000000000000000 −2.2204e-016 60.6359
1002 ACH 1.000000000138630 −1.3863e-010 3.1371

KNITRO 1.000000080009031 8.8818e-16 0.7430
SSH 1.000000000025000 −2.5000e-011 0.6278
CHIP 1.000003049566824 −3.0492e-006 883.4582

2002 ACH 1.000000000138629 −1.3863e-010 15.2567
KNITRO 1.000000080094647 8.8818e-16 12.448
SSH 1.000000000025000 −2.5000e-011 1.0463
CHIP – – fail3

3002 ACH 1.000000000138629 −1.3863e-010 36.7205
KNITRO 1.000000080248269 8.8818e-16 26.105
SSH 1.000000000025000 −2.5000e-011 2.2792
CHIP – – fail3

5002 ACH 1.000000000138630 −1.3863e-010 105.8642
KNITRO 1.000000080687340 8.8818e-16 69.258
SSH 1.000000000025000 −2.5000e-011 5.9249
CHIP – – fail3

10002 ACH 1.000000000138630 −1.3863e-010 407.0833
KNITRO – – fail2

SSH 1.000000000025000 −2.5000e-011 18.3479

• Parameter θ = 0.0001;
• Parameters in end game section tc = 10−6, tend = 0.1, mmax = 5;
• Step size parameters h0 = 0.1, Bmin = [0.5, 0.75], Bmax = [3, 1.5];
• Tracking tolerances Htol = 10−3, H f inal = 10−12;
• Initial Lagrangian multipliers (1, . . . , 1) ∈ Rm for CHIP method, 1 for ACH and

SSH methods.

For different problems, we list the objective function f (x∗), the max function gmax(x∗)
of constraints at x∗ and CPU time in seconds, where x∗ is approximate solution computed
by the corresponding algorithm. For the problems that were not solved by the conservative
setting, we also give the reason for failure. The notation ‘fail1’ indicates the step length in
predictor step is smaller than 10−10 before t = 0. This is generally due to poor conditioned
Jacobian matrix. The notation ‘fail2’ means out of memory. The notation ‘fail3’ means no
result in 5000 Newton iterations or 3600 s.

Example 5.1 [17]

f (x) = x2,

gi (x) = −x1 cos(2π i/10, 000) − x2 sin(2π i/10, 000) − 1,

i = 1, . . . , 10, 000.

x (0) = (0.8, 0.5) ∈ R2.

744 L. Dong et al.

Table 3. Test results for Example 5.3.

m Method f (x∗) gmax(x∗) Time

CHIP – – fail3

105 ACH 97.158852437685624 0.000 5.4201
KNITRO 97.158852529936652 −4.4627e-06 3.542
SSH 97.158852437685624 0.000 0.9941
CHIP – – fail3

5 × 105 ACH 97.158852437685624 0.000 29.0840
KNITRO 97.158852609014517 −4.4627e-06 37.838
SSH 97.158852437685624 0.000 3.9175
CHIP – – fail3

106 ACH 97.158852437685624 0.000 55.8894
KNITRO – – fail2

SSH 97.158852437685624 0.000 7.2850
CHIP – – fail3

5 × 106 ACH 97.158852437685624 0.000 271.3043
KNITRO – – fail2

SSH 97.158852437685624 0.000 34.4681
CHIP – – fail3

107 ACH – – fail2

KNITRO – – fail2

SSH 97.158852437685624 0.000 66.6486

Example 5.2 [18]

f (x) = x2
3 + x2

4 ,

gi, j (x) = (ti − x1)
2/x2

3 +
(

t ′j − x2

)2
/x2

4 − 1,

ti = i/(
√

m − 1), i = 0, . . . ,
√

m − 1,

t ′j = j/(
√

m − 1), j = 0, . . . ,
√

m − 1.

x (0) = (0, 0, 100, 100) ∈ R4.

Example 5.3 [19]

f (x) =
(

x1 − 2x2 + 5x2
2 − x3

2 − 13
)2 +

(
x1 − 14x2 + x2

2 + x3
2 − 29

)2
,

gi (x) = x2
1 + 2x1t2

i + ex1+x2 − eti ,

ti = i/(m − 1), i = 0, . . . , m − 1.

x (0) = (0,−45) ∈ R2.

Optimization 745

Table 4. Test results for Example 5.4.

m Method f (x∗) gmax(x∗) Time

CHIP – – fail1

104 ACH 2.430533988749895 0.000 1.4062
KNITRO 2.430533988749895 2.2204e-16 0.8710
SSH 2.430533988749895 0.000 0.8121
CHIP – – fail1

2 × 104 ACH 2.430533988749907 −8.6597e-015 2.4540
KNITRO 2.430533988749907 2.2204e-16 2.9780
SSH 2.430533988749895 0.000 0.8360
CHIP – – fail1

4 × 104 ACH 2.430533988763167 −9.1704e-012 5.0861
KNITRO 2.454433988763167 2.2204e-16 7.4170
SSH 2.430533988749895 0.000 0.9432
CHIP – – fail3

6 × 104 ACH 2.430533988795290 −3.1367e-011 7.5444
KNITRO 2.430633988795290 2.2204e-16 13.5780
SSH 2.430533988749895 0.000 1.4406
CHIP – – fail3

8 × 104 ACH 2.430533988823046 −5.0546e-011 10.6630
KNITRO 2.430633988823046 2.2204e-16 16.5860
SSH 2.430533988751606 −1.1826e-012 1.8757

Table 5. Test results for Example 5.5 with n = 30.

m Method f (x∗) gmax(x∗) Time

CHIP 0.031453202660645 −5.4549e-003 9.1668
103 ACH 0.031022760952790 0.0000 1.7579

KNITRO 0.031022772908412 −2.4737e-005 2.969
SSH 0.031022760952790 0.0000 0.1557
CHIP 0.041433274661343 −0.1214 267.8435

104 ACH 0.031022791079590 −2.2204e-016 4.8858
KNITRO 0.031022814962909 2.4948e-005 49.313

SSH 0.031022791079590 0.0000 3.0114
CHIP – – fail3

105 ACH 0.031022793893199 −1.3544e-014 46.4658
KNITRO – – fail2

SSH 0.031022793893198 2.2204e-016 23.4122
CHIP – – fail2

106 ACH – – fail2

KNITRO – – fail2

SSH 0.031023608781846 −1.0776e-005 344.3138

746 L. Dong et al.

Table 6. Test results for Example 5.5 with m = 100.

n Method f (x∗) gmax(x∗) Time

CHIP 0.029399883417009 3.3306e-016 6.1666
200 ACH 0.029399883417024 −1.9417e-013 1.8751

KNITRO 0.029399893453975 2.8306e-005 11.531
SSH 0.029399883417017 −1.0147e-013 0.9165
CHIP 0.029488614569146 −2.4349e-004 9.1659

400 ACH 0.029399883380900 −1.8607e-013 6.0711
KNITRO 0.029399893397862 2.8306e-005 45.266
SSH 0.029399883380893 −8.3377e-014 3.4166
CHIP 0.029399883380886 2.2204e-016 16.7669

600 ACH 0.029399883380896 −1.2589e-013 14.3287
KNITRO 0.029399893747722 2.8306e-005 97.219
SSH 0.029399883380898 −1.5487e-013 7.8640
CHIP 0.029567449317801 −1.8695e-004 24.6168

800 ACH 0.029399883380901 −1.9850e-013 29.9600
KNITRO 0.029399893739437 2.8306e-005 191.484
SSH 0.029399883380894 −9.9698e-014 15.7286
CHIP 0.029773104560561 −3.0575e-004 32.0488

1000 ACH 0.029399883380894 −1.0869e-013 52.7604
KNITRO 0.029399894202721 2.8306e-005 308.438
SSH 0.029399883380910 −3.0819e-013 27.4092

Table 7. Test results for Example 5.6 with n = 800.

m Method f (x∗) gmax(x∗) Time

CHIP 20.210635574436939 −2.1538e-014 193.0102
100 ACH 20.210635574439873 −5.7731e-015 253.3545

KNITRO 20.2106356156303 2.0772e-004 226.125
SSH 20.210636266333168 −2.6657e-008 164.1312
CHIP 40.424305960672918 −5.6119e-008 572.7819

200 ACH 40.424303616164572 −1.0956e-008 857.4890
KNITRO 40.4243031284032 5.0772e-004 570.047
SSH 40.424303047400919 1.3100e-014 496.7975
CHIP 60.637300729793594 −5.0914e-008 1079.8707

300 ACH 60.637297549465295 −1.0072e-008 2037.5643
KNITRO 60.6372968808955 -0.0013 3062.406
SSH 60.637297566921731 −1.029e-008 984.8547
CHIP 80.850125666102116 −3.4885e-008 1956.3840

400 ACH 80.850123007681901 −9.2807e-009 3167.2833
KNITRO – – fail2

SSH 80.850123015835678 −9.3593e-009 1730.3105
CHIP 101.0628837497786 −2.9297e-008 3471.5560

500 ACH 101.0628808199577 −6.7224e-009 4577.8916
KNITRO – – fail2

SSH 101.0628808093738 −6.6411e-009 2364.7964

Optimization 747

Table 8. Test results for Example 5.6 with m = 100.

n Method f (x∗) gmax(x∗) Time

CHIP 20.210635574437084 2.2648e-014 11.8135
100 ACH 20.210635574438012 3.2862e-014 8.8959

KNITRO 20.2106356158759 −9.2275e-005 50.906
SSH 20.210635574438182 2.4424e-014 5.1139
CHIP 20.210635574438850 −3.1752e-014 356.1564

1000 ACH 20.210635574436136 3.1086e-015 323.3035
KNITRO 20.2106356157321 0.0010 312.234
SSH 20.210635574438907 3.5971e-014 178.2559
CHIP 20.210638676823059 -1.1953e-007 1544.8107

2000 ACH 20.210635574434164 2.1760e-014 1596.5091
KNITRO 20.2106356574943 −9.2275e-005 1075.922
SSH 20.210636182608813 −2.3432e-008 814.3553
CHIP 20.210635574439568 2.6867e-014 3618.9849

3000 ACH 20.210635574442843 7.1054e-015 3698.8322
KNITRO 20.2106395893774 −9.2275e-005 3691.094
SSH 20.210635574442843 7.1054e-015 3129.8278
CHIP – – fail2

4000 ACH 20.210635574441049 8.2156e-015 7527.6500
KNITRO – – fail2

SSH 20.210635574441049 8.2156e-015 6397.9948

Table 9. The time of searching the cell for Examples 5.1–5.4.

Example 5.1 Example 5.2 Example 5.3 Example 5.4

m – 10002 107 8 × 104

Time1 0 7.2896 14.0595 0.2968
Time2 0.2589 18.3479 66.6489 1.8757

Note: Time1 is the time of searching the cell and Time2 is the CPU time.

Example 5.4 [19]

f (x) = x2
1/3 + x1/2 + x2

2 ,

gi (x) =
(

1 − x2
1 t2

i

)2 − x1t2
i − x2

2 + x2,

ti = i/(m − 1), i = 0, . . . , m − 1.

x (0) = (−1, 100) ∈ R2.

Example 5.5 [20]

f (x) = xT x/2,

gi (x) = 3 + 4.5 sin(4.7π(ti − 1.23)/8) −
n∑

k=1

xktk−1
i ,

748 L. Dong et al.

ti = i/m, i = 1, . . . , m.

x (0) = (1, . . . , 1) ∈ Rn .

Example 5.6

f (x) =
m∑

i=1

n∑
j=1

(ai, j x j)
2,

gi (x) = tan(ti) −
n∑

k=1

xktk−1
i ,

ai, j = i/m + j/(100n),

ti = i/m,

i = 1, . . . , m, j = 1, . . . , n.

x (0) = (1, 5, 0, . . . , 0) ∈ Rn .

5.3. Remarks

Now, we give some remarks on numerical results.

(1) From Tables 1–5 and 7, we see when n is fixed, the advantage of SSH method
is very obvious as m increases. For nonlinear programming with large number of
complicated constraints, the SSH method can save much computation of the gradient
and the Hessian of constraint functions and hence is more efficient than the CHIP
and ACH method. Even compare with very successful optimization softwares like
KNITRO, the SSH method is very encouraging by above preliminary numerical
tests (Tables 1–8).

(2) From Table 9, we know the efficiency of the SSH method is influenced by the
method of searching the cell. If it can be improved, the SSH method will get better
performance.

(3) Algorithm 5.1 is a simple implementation of the SSH method. It needs to do much
work to improve implementation of the SSH method on all processes of numerical
path tracing, say, schemes of predictor and corrector, step length updating, linear
system solving and end game.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The research was supported by the National Natural Science Foundation of China [grant number
11171051], [grant number 91230103]; the Fundamental Research Funds for the Central Universities
[DC201502050408]; the Doctoral Starting up Foundation of Dalian Nationalities University, China
[0701110100].

Optimization 749

References

[1] Kortanek KO, Potra F, Ye Y. On some efficient interior point algorithms for nonlinear convex
programming. Linear Algebra Appl. 1991;152:169–189.

[2] Monteiro RDC,Adler I.An extension of Karmarkar type algorithm to a class of convex separable
programming problems with global linear rate of convergence. Math. Oper. Res. 1990;15:408–
422.

[3] Wang Y, Feng GC, Liu TZ. Interior point algorithm for convex nonlinear programming problems.
Numer. Math. J. Chinese Univ. 1992;1:1–8.

[4] Zhu J. A path following algorithm for a class of convex programming problems. ZOR-Methods
Models Oper. Res. 1992;36:359–377.

[5] Feng GC, Lin ZH, Yu B. Existence of an interior pathway to a Karush–Kuhn–Tucker point of a
nonconvex programming problem. Nonlinear Anal. 1998;32:761–768.

[6] Feng GC,Yu B. Combined homotopy interior point method for nonlinear programming problems.
In: Advances in numerical mathematics; Proceedings of the Second Japan–China Seminar on
Numerical Mathematics (Tokyo, 1994). Vol. 14, Lecture notes in numerical and applied analysis.
Tokyo: Kinokuniya; 1995. p. 9–16.

[7] Lin ZH, Yu B, Feng GC. A combined homotopy interior point method for convex nonlinear
programming. Appl. Math. Comput. 1997;84:193–211.

[8] Liu QH, Yu B, Feng GC. An interior point path following method for nonconvex nonlinear
programming problem with quasi normal cone condition. Adv. Math. 2000;19:281–282.

[9] Yu B, Liu QH, Feng GC. A combined homotopy interior point method for nonconvex
programming with pseudo cone condition, Northeast. Math. J. 2000;16:383–386.

[10] Shang YF, Yu B. Boundary moving combined homotopy method for nonconvex nonlinear
programming and its convergence. J. Jilin Univ. Sci. 2006;44:357–361.

[11] Yu B, Feng GC, Zhang SL. The aggregate constraint homotopy method for nonconvex nonlinear
programming. Nonlinear. Anal. 2001;45:839–847.

[12] Li XS. An aggregate function method for nonlinear programming. Sci. China (Ser. A).
1991;34:1467–1473.

[13] Zhao GH, Wang ZR, Mou HN. Uniform approximation of min–max functions by smooth splines.
J. Comput. Appl. Math. 2011;236:699–703.

[14] Bates SM. Toward a precise smoothness hypothesis in Sard’s theorem. Proc. Amer. Math. Soc.
1993;117:279–283.

[15] Naber GL. Topological methods in Euclidean spaces. Mineola (NY): Dover Publications Inc.;
2000. Reprint of the original (1980).

[16] Abraham R, Robbin J. Transversal mappings and flows. New York (NY): Benjamin; 1967.
[17] Gould NIM, Orban D, Toint PL. CUTEr (and sifdec), a constrained and unconstrained testing

environment, revisted. Technical report TR/PA/01/04. Toulouse, France: CERFACS; 2001.
[18] Zhou ZY, Yu B. The flattened aggregate constraint homotopy method for nonlinear programming

problems with many nonlinear constraints. Abstr. Appl. Anal. 2014;2014:1–14.
[19] Li DH, Qi LQ, Tam J, Wu SY. A smoothing Newton method for semi-infinite programming. J.

Global Optim. 2004;30:169–194.
[20] Ni Q, Ling C, Qi LQ, Teo KL. A truncated projected Newton-type algorithm for large-scale

semi-infinite programming. SIAM J. Optim. 2006;16:1137–1154.

	Abstract
	1. Introduction
	2. Parameterized Sard theorem with Cr,1 smoothness
	3. Cubic spline which uniformly approximates max functions
	4. Spline smoothing homotopy and homotopy path
	5. The SSH-S-N procedure and numerical experiments
	5.1. The SSH-S-N procedure
	5.2. Numerical experiment
	5.3. Remarks

	Disclosure statement
	Funding
	References

