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Polar coupling enabled nonlinear optical filtering
at MoS2/ferroelectric heterointerfaces
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Complex oxide heterointerfaces and van der Waals heterostructures present two versatile

but intrinsically different platforms for exploring emergent quantum phenomena and

designing new functionalities. The rich opportunity offered by the synergy between these two

classes of materials, however, is yet to be charted. Here, we report an unconventional

nonlinear optical filtering effect resulting from the interfacial polar alignment between

monolayer MoS2 and a neighboring ferroelectric oxide thin film. The second harmonic gen-

eration response at the heterointerface is either substantially enhanced or almost entirely

quenched by an underlying ferroelectric domain wall depending on its chirality, and can be

further tailored by the polar domains. Unlike the extensively studied coupling mechanisms

driven by charge, spin, and lattice, the interfacial tailoring effect is solely mediated by the

polar symmetry, as well explained via our density functional theory calculations, pointing to a

new material strategy for the functional design of nanoscale reconfigurable optical

applications.
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The heterointerface between two functional materials presents
a powerhouse of various emergent quantum phenomena
and novel functionalities. Two notable examples are the

complex oxide epitaxial interfaces1 and van der Waals (vdW)
heterostructures2, with the former hosting interfacial magneto-
electric coupling3, gate-tunable two-dimensional (2D) super-
conductivity4 and topological states5, and polar vortices6,7, and the
latter leading to the discoveries of the long sought after Hofstadter
butterfly8–10, moiré excitons11–13, and correlation-driven quantum
phase transitions14,15. An even broader spectrum of functional
properties can emerge at the heterointerface between these two
distinct materials, a territory yet to be fully explored. Like the
ferroelectric oxides, monolayer (1L) transition metal dichalcogen-
ides (TMDCs) such as MoS2 are noncentrosymmetric and possess
polar axes. The associated functional phenomena, including pie-
zoelectricity16 and polar metal switching17, have drawn substantial
research interests recently. When 2D TMDC is interfaced with a
ferroelectric gate, the spontaneous ferroelectric polarization offers
the unique opportunity to induce nonvolatile charge modulation in
the channel18–20. Combining the polarization doping with nanos-
cale ferroelectric domain patterning further allows local tuning of
the electronic20–22 and optical properties23–25 of the vdW channel
layer. Beyond the charge-mediated interfacial coupling, synergy
between the polar nature of TMDCs and ferroelectric has never
been explored to date.

In this work, we report an unconventional nonlinear optical
filtering effect enabled by the polar symmetry of 1L MoS2 and a
neighboring ferroelectric PbZr0.2Ti0.8O3 (PZT) thin film. The
heterostructure exhibits either strong enhancement or substantial
quenching of the reflected second-harmonic generation (SHG)

response at the ferroelectric domain walls (DWs), which reveals
the intricate coupling of the polar axis of MoS2 with the chiral
rotation of the surface dipole at the DWs, as modeled via our
density functional theory (DFT) calculations. Unlike the exten-
sively studied interfacial coupling mechanisms driven by charge,
spin, and lattice18, this tailored SHG signal is solely mediated
by symmetry, pointing to a widely applicable strategy for
achieving designate optical functionalities in noncentrosymmetric
materials.

Results
Characterization of 1L MoS2/PZT heterostructures. Figure 1a
shows the experimental set-up for the SHG imaging of the
MoS2–ferroelectric heterostructure. 1L MoS2 flakes were
mechanically exfoliated from bulk crystals on Gel-Films and
identified via the frequency difference Δ between the E1

2g and A1g

modes in the Raman spectrum (Fig. 1b, Supplementary Fig. 6b).
The crystalline orientation of MoS2 was identified on the Gel-
Film by polarized SHG measurements (Supplementary Fig. 4b).
For the ferroelectric layer, we worked with 20–50-nm-thick epi-
taxial PZT thin films deposited on (001) SrTiO3 substrates, with
La0.67Sr0.33MnO3 (LSMO) (10 nm) buffer layers serving as the
bottom electrode (“Methods”). The PZT films are (001)-oriented
with out-of-plane polar axis (Supplementary Fig. 1). Selected 1L
MoS2 flakes were transferred on top of the PZT film above a
region patterned with a series of square domains with alternating
up (Pup or [001]) and down (Pdown or 00�1½ �) polarization. Fig-
ure 1c shows the piezoresponse force microscopy (PFM) phase
image of the domain pattern on a 50-nm PZT before the MoS2

1.8 1.9 2.0 2.1

2 × 104

1 × 104

0

P
L 

in
te

ns
ity

 (
a.

u.
)

Energy (eV)

 
Δ∼19.9 cm–1

 

ba

e

In
te

ns
ity

7000 (a.u.)

1000

W
id

th

0.09 (eV)

0.04

P
os

iti
on

1.95 (eV)

1.86

180°

–180°

Pdown

Pdown

Pup

Pup

Pup

Pdown

Pup

Pup

Pdown

PZT

MoS2/PZT

fc

d

[010]

[100]

Mo

S

PZT

z

x
y 360 380 400 420

0

1000

2000Detector

Detector

Polarizer

Fs laser

Galvano

scanner Analyzer

Dichroic mirror

Objective

In
te

ns
ity

 (
a.

u.
) 

Raman shift (cm–1)

E2g

A1g

1

Fig. 1 Characterization of 1L MoS2/PZT heterostructures. a Schematic of the SHG experimental set-up. The laboratory coordinate system is shown as
inset. b Raman spectrum of a 1L MoS2 flake on gel film showing E12g mode at 384.0 cm−1 and A1g mode at 403.9 cm−1. c, d PFM phase images of c square
domains written on a PZT film and d the same region with a 1L MoS2 transferred on top. Inset: Crystalline orientation of PZT. The scale bars are 3 μm.
e Room temperature PL spectra of the 1L MoS2 on the Pup and Pdown domains shown in d. The domain region is outlined in the optical image of the sample
(inset). The scale bar is 10 μm. f PL mapping of the peak intensity (upper), width (middle), and position (lower) on a 1L MoS2/PZT sample in a region with
both Pup and Pdown domains. The dotted lines mark the DW positions. The scale bars are 2 μm.
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transfer, where the horizontal (vertical) DWs are along the [100]
([010]) orientation of PZT. During transfer, the a-axis of MoS2
(zigzag orientation) was aligned with the horizontal DWs ([100]
orientation of PZT) (see “Methods” for transfer details). As
shown in Fig. 1d, the presence of the MoS2 top layer does not
alter the underneath domain structure. This is not surprising as
the PZT film is exposed to the ambient condition prior to the
transfer, where the polarized surface-bound charge can be well
screened by charged adsorbates26,27. The MoS2 flake is deposited
on top of the domain structure via a dry-transfer approach, which
should not affect this surface screening layer on PZT.

Figure 1e compares the photoluminescence (PL) spectra of
MoS2 obtained from the regions on the Pup and Pdown domains,
with the corresponding PL mapping shown in Fig. 1f. While there
is no change in the peak position, both the PL intensity and width
exhibit strong dependence on the PZT polarization state. The
region above the Pup domain exhibits higher PL intensity,
narrower peak width, and a reduced ratio between the trion and
neutral exciton populations (Supplementary Fig. 5). Such
modulation of PL spectra in TMDCs via neighboring ferroelectric
domains has previously been attributed to the polarization-
induced doping effect23,24 and confirms the close interfacial
contact between MoS2 and PZT in our samples. The relative
strength of the modulation, however, can be affected by the
interfacial charge screening condition for PZT27 and thus
depends on the preparation details of the composite structures
(Supplementary Note 2)26.

1L MoS2 exhibits strong nonlinear optical responses, such as
SHG21,28–30 and sum-frequency generation21,30, due to the
lack of inversion symmetry. For normal incident light (800 nm
center wavelength), we observed strong SHG response
(~400 nm) from the 1L MoS2 flakes on Gel-Films, which
conforms to the rotational symmetry of the lattice (Supple-
mentary Fig. 4b–d). For the PZT films, as the incident light is a
transversely polarized (within x–y plane) electromagnetic wave
propagating along the polar axis (–z-direction or 00�1½ �
orientation of PZT), there is no SHG response on the uniformly
polarized domains. As shown in the SHG mapping image

(Fig. 2a), prominent SHG signals have only been observed at the
DWs, consistent with previous reports on PZT thin films31,32,
which suggests the existence of an in-plane polarization (p||)
facilitated by the DW. The width of the detected SHG signal is
about 300–400 nm, which approaches the diffraction limit at
this wavelength and the resolution of the SHG microscope
(“Methods”). To determine the orientation of p||, we performed
SHG imaging with an analyzer applied at various orientations,
i.e., making angle φ= 90°, 45°, and 0° with respect to the
incident light polarization (x-axis). As shown in Fig. 2b–d, the
SHG response can only be detected when the analyzer can
be projected along the direction perpendicular to the DW. This
means that p|| is residing in a plane normal to the DW, similar
to the Néel-type chiral DW31. In bulk PZT, the 180° DWs are
known to be at the unit cell scale33,34, and such chiral DW is not
energetically favorable. Continuous rotation of local dipoles,
however, can be stabilized at the surface of PZT thin films by
depolarization field35, resulting in a net lateral polarization. For
both MoS2 on Gel-Films and bare PZT, the SHG signals
detected in the transmission mode exhibit qualitatively similar
behavior as in the reflection mode (Supplementary Figs. 3
and 4c, d).

Reflected SHG response of 1L MoS2/PZT heterostructures. We
then mapped the SHG response of the 1L MoS2/PZT hetero-
structure. Figure 2e shows the reflected SHG mapping taken on
the same domain structure in PZT with the 1L MoS2 transferred
on top. The imaging condition is similar to that used in Fig. 2a,
i.e., with incident light polarization along x-axis (a-axis of MoS2)
and no analyzer applied. As expected, we observed strong SHG
intensity from MoS2 on the uniformly polarized Pup and Pdown
domains. Unlike the PL data (Fig. 1e, f), no prominent difference
in the SHG signal has been observed in the regions on the Pup and
Pdown domains, confirming that the signal is not affected by the
interfacial charge coupling between MoS2 and PZT. At the DWs,
however, the heterointerface produces a filtering effect for the
reflected SHG that not only selects the light polarization, similar
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Fig. 2 Reflected SHG response of domains on PZT with and without MoS2 top layer. a–d SHG mapping of the domain structure shown in Fig. 1c taken
a with no analyzer applied and b–d with an analyzer applied at different angles φ (yellow open arrows) with respect to the incident light polarization (red
solid arrows). The excitation laser power is 30mW. e–h SHG mapping of the same domain structure with a 1L MoS2 flake transferred on top taken with the
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PZT and MoS2 are shown as insets.
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to that of a vertical analyzer (Fig. 2b), but also the DW chirality.
Along the vertical ([010]) DWs, the SHG signal is at a similar
level to those on the Pup and Pdown domains. This is in sharp
contrast to those observed on bare PZT, where the vertical DWs
have similar intensity as those from the horizontal ([100]) DWs
(Fig. 2a). The horizontal DWs, more interestingly, exhibit alter-
nating enhancement and suppression of the SHG signals. At the
set of DWs labeled as 1, 3, and 5, the SHG response is about two
times of those on the Pup and Pdown domains. At the other set of
DWs (labeled as 2, 4, and 6), the SHG response is substantially
quenched. In Fig. 2e, the MoS2 flake shows several cracked
regions resulting from the transfer, exposing the bare PZT
underneath. The fact that the SHG intensity at the even-
numbered DWs is comparable to these regions indicates that
the emission from MoS2 is close to be entirely canceled by the
presence of these DWs. The tailoring of the reflected SHG signal
at the DW is a robust effect and has been observed in multiple 1L
MoS2 samples. Similar tuning pattern is also observed on three-
and five-layer MoS2 flakes on PZT and is absent in bilayer and
four-layer MoS2 (Supplementary Fig. 6), which reveals the
essential role of the noncentrosymmetric symmetry of MoS2 in
the observed effect. In samples with odd-layer MoS2, the mod-
ulation strength decreases with increasing layer number, con-
sistent with fact that the SHG signal of MoS2 attenuates rapidly in
thicker films29.

Figure 2f–h show the SHG mapping with an analyzer applied at
the same angles φ as in Fig. 2b–d, respectively. At φ= 90° (Fig. 2f),
the image shows qualitatively similar SHG behaviors as in Fig. 2e,
confirming that the signals at the DWs are linearly polarized,
with the polarization perpendicular to the DW. At φ= 45°, even
though the intensity of the SHG signal is significantly suppressed
for both the domain and DW regions, the relative relation between
them remains the same (Fig. 2g). Only when the SHG signal
of MoS2 is fully quenched by a parallel analyzer at φ= 0°
(Supplementary Fig. 4b) does the signal from the vertical DWs of
PZT become appreciable (Fig. 2h).

The alternately enhanced or suppressed SHG signals can be
well correlated to the in-plane polarization of the DWs. A clear
difference between the odd- and even-numbered DWs is the
arrangement of the domains that they separate. The odd DWs are
accompanied with top Pup and bottom Pdown domains, opposite
to the distribution for the even DWs. To conform to the bulk
polarization change, the surface polarization at the vicinities of
the odd and even DWs is expected to have opposite chirality
(Fig. 3a), with the corresponding ~pk pointing to −y and +y
directions, respectively. The orientation of~pk itself does not have
an impact on the intensity of the SHG response (I / tj~Ej2), as
clearly shown for bare PZT in Fig. 2a. The presence of a 1L MoS2
on top, however, modifies the polar symmetry of the heterointer-
face. One of the polar, armchair directions of the MoS2 flake is
along the y-axis, which is either parallel or anti-parallel to~pk for
the horizontal ([100]) DWs, depending on the clarity. The
enhanced or suppressed SHG response can thus be attributed to
the alignment of the polar axis of MoS2 (~PMoS2

) with the in-plane

polarization at the PZT DWs (~PDW).
Next, we compared the SHG response of 1L MoS2 interfaced

with 20, 30, and 50 nm PZT films (Supplementary Fig. 7). Despite
the different PZT thicknesses, all heterostructures exhibit
qualitatively similar SHG responses, with alternating enhance-
ment and suppression of the SHG signal observed at the
horizontal ([100]) DWs and unappreciable SHG contrast
observed at the vertical ([010]) DWs. This result further confirms
the interfacial nature of the DW’s tailoring effect. In fact, the 180°
DW in bulk PZT is on the order of a couple of unit cells and does

not acquire an in-plane component33,34. The chiral rotation of
the local dipole, which is critical for forming the in-plane
polarization, can only be stabilized at the surfaces/interfaces
(Fig. 3a) due to the presence of strong depolarization field35,36.
For example, previous transmission electron microscopy (TEM)
studies have revealed a flux-closure polar structure at the surface
of the DW in PZT thin films35 and even emergence of polar
vortices in PbTiO3/SrTiO3 superlattices6,7, where theoretical
modeling has pointed to the dominant role of the interface
contribution to the polar anomaly7.

Theoretical modeling of interfacial polar coupling. To examine
the feasibility of the interfacial polar coupling scenario, we
exploited a phenomenological model to estimate the net in-plane
polarization at the DW based on the TEM result35, considering a
triangle-shaped flux-closure domain structure that hosts con-
tinuous electric dipole rotations at the surface of a 180° DW
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(Fig. 3a). Compared with an a-domain-like DW configuration
induced by the local electric field of a biased atomic force
microscope (AFM) tip (Supplementary Fig. 10), this model
depicts a dipole distribution with comparable (if not smaller)
spatial extension but lower electrostatic energy34. The bulk values
of the out-of-plane (Pout) and in-plane (Pin) polarization were
calculated via DFT within the local density approximation
(Supplementary Note 4), which yields Pout= 78.1 μC cm−2=
0.049 e Å−2 and Pin= 59.1 μC cm−2= 0.037 e Å−2. The local
polarization at point (x,z) inside this triangular area can be
decomposed to the in-plane P|| (x, z) (x-component) and out-of-
plane P? x; zð Þ (z-component). The net in-plane dipole moment
can then be estimated by integrating P|| (x, z) over the volume of
the flux-closure domain VPZT. We thus deduced the in-plane
dipole per unit length as:

pk ¼
R
Pk x; zð ÞdVPZT

l
¼

ZZ
Pk x; zð Þdxdz ¼ 1

4
w ´ h ´ Pin ¼ 6:93 e:

ð1Þ
Here we assumed the maximum width w and depth h of the
triangle domain to be 2.5 and 3 nm, respectively, based on the
TEM result35, and l is the lateral extension of the DW.

We then considered the polar property of 1L H-MoS2, which
belongs to the D3h point group. The polar displacement in the
unit cell can generate three equal polarizations along those three
polar directions, leading to zero net polarization. However,
when one of the polar axis is coupled to a neighboring dipole,
the rotational symmetry is lifted. Using DFT, we estimated the
polarization of MoS2 along one polar direction to be PMoS2

¼
85:5 μC cm�2 (Supplementary Note 4). Using the thickness of
1L MoS2 of h1= 3.11 Å, we obtained the dipole moment per
unit length for the area above the flux-closure DW in PZT
(Fig. 3b):

pMoS2
¼ PMoS2

´ h1 ´w ¼ 6:65 ´ 10�19C � 4:15 e; ð2Þ
which is on the same order of p|| estimated for the DW in PZT
(Eq. 1). While the precise value of the polarization may vary,
this simple model naturally explains the major features of our
observation. When one of the polar axis of MoS2 is aligned with
the in-plane polarization of PZT at the DW regions, as for the
odd DWs, their excited interfacial SH dipole fields are
coherently coupled37,38, leading to significantly enhanced
SHG response that is linearly polarized along the polar axis.
For the anti-aligned even DWs, where these two SH dipole
fields cancel each other, the SHG intensity is strongly
suppressed. For the vertical ([010]) DWs, on the other hand,
p|| is not coupled to any of the polar axes of MoS2. The SHG
responses of PZT and MoS2 remain to be independent, and we
only observe the weak SHG from PZT that is filtered by the
MoS2 top layer.

To further test the proposed scenario based on the interfacial
polar coupling between MoS2 and the DW, we created square
domains on PZT with different stacking angles (θ) with respect to
the same MoS2 top layer. Figure 3c shows the PFM phase image
of four square-shaped domain structures written at different
scanning directions, which are rotated by θ= 0°,15°,30°, and 45°
relative to x-axis in the clockwise direction. For bare PZT, the
SHG response is uniform at all DW regions, independent of their
orientations (Fig. 3d). We then transferred a lL MoS2 flake on top
of this area, with the a-axis (zigzag orientation) aligned along x-
direction. As shown in Fig. 3e, without an analyzer, the stacking
angle between MoS2 and DW has a clear impact on the reflected

SHG intensity, suggesting that the heterointerface acts as an
unconventional light polarizer.

The net SHG response for each of these DWs can be well
modeled using the nonlinear electromagnetic theory, considering
the second-order nonlinear optical susceptibility tensors for
the MoS2/PZT heterointerface. As the thickness of MoS2 and the
depth of the flux-closure region at PZT DW (h) are well below the
optical wavelength, the susceptibility tensor (or the contracted
d-tensor) of the composite system equals to the sum of the

adjacent layers: dð2Þinterface ¼ d 2ð Þ
MoS2

þ d 2ð Þ
DW, where d 2ð Þ

MoS2
and d 2ð Þ

DW are
the d-tensors for MoS2 and DW, respectively. For 1L MoS2 with
D3h point group symmetry, the second-order d-tensor can be
expressed as29:

d 2ð Þ
MoS2

¼
0 0 0 0 0 d016
d021 d022 0 0 0 0

0 0 0 0 0 0

0

B
@

1

C
A; ð3Þ

where d021 ¼ d016 ¼ �d022 ¼ dMoS2
. For the tetragonal PZT thin

films with 4 mm point group symmetry, the d-tensor can be
written as39:

d 2ð Þ
PZT ¼

0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0

0

B
@

1

C
A; ð4Þ

where d15 ¼ d31; and d33 � 0:9d15. The tensor elements for PZT
were obtained by averaging the calculated and experimental
values31,39. In our work, the crystallographic axes of PZT
coincide with the experimental reference frame (x, y, z),
where the [001] orientation of PZT is along the z-axis (Fig. 1a).
We first considered a square Pdown domain embed in a Pup
region in PZT (Fig. 3c), with the horizontal ([100]) DW
aligned with the a-axis of MoS2 (stacking angle θ= 0°). The
interfacial composite tensors at the Pup and Pdown domains are
given by:

dinterfacePup
¼

0 0 0 0 d15 dMoS2

dMoS2
�dMoS2

0 d15 0 0

d15 d15 d33 0 0 0

0

B
@

1

C
A;

dinterfacePdown
¼

0 0 0 0 �d15 dMoS2

dMoS2
�dMoS2

0 �d15 0 0

�d15 �d15 �d33 0 0 0

0

B
@

1

C
A:

ð5Þ
As the lateral polarization for the flux-closure domain is

comparable with the bulk polarization of PZT, we obtained the
d-tensors for the four DWs (Top–DW, Bottom–DW, Left–DW,
and Right–DW) via a rotation matrix transformation (Supple-
mentary Note 5)31:

d 2ð Þ
Top�DW ¼ �d 2ð Þ

Bottom�DW ¼
0 0 0 0 0 d15
d15 d33 d15 0 0 0

0 0 0 d15 0 0

0

B
@

1

C
A;

d 2ð Þ
Left�DW ¼ �d 2ð Þ

Right�DW ¼
d33 d15 d15 0 0 0

0 0 0 0 0 d15
0 0 0 0 d15 0

0

B
@

1

C
A:

ð6Þ
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The interfacial composite tensors at the DWs can thus be
expressed as:

dinterfaceTop�DW ¼
0 0 0 0 0 dMoS2

þ d15
dMoS2

þ d15 �dMoS2
þ d33 d15 0 0 0

0 0 0 d15 0 0

0

B
@

1

C
A;

dinterfaceBottom�DW ¼
0 0 0 0 0 dMoS2

� d15
dMoS2

� d15 �dMoS2
� d33 �d15 0 0 0

0 0 0 �d15 0 0

0

B
@

1

C
A;

dinterfaceLeft�DW ¼
d33 d15 d15 0 0 dMoS2

dMoS2
�dMoS2

0 0 0 d15
0 0 0 0 d15 0

0

B
@

1

C
A;

dinterfaceRight�DW ¼
�d33 �d15 �d15 0 0 dMoS2

dMoS2
�dMoS2

0 0 0 �d15
0 0 0 0 �d15 0

0

B
@

1

C
A:

ð7Þ
Furthermore, we derived the explicit expressions of interfacial

SHG tensors at the four DWs as a function of stacking angle θ,
which are given in Supplementary Eq. 5. The SH dipole field
P2ω
interface is given by the product of d-tensors and the fundamental

field, and the SHG intensity at the 1L MoS2/PZT interface is given
by:

ISHG φ ¼ 0oð Þ � P2ω
interface φ ¼ 0oð Þ�

�
�
�2: ð8Þ

To simplify the calculation, we assumed that the maximum
SHG intensities from MoS2 and flux-closure domain of PZT are
the same, which is reasonable given their closely matched dipole
moments. Figure 3f shows the simulated SHG results, which
capture well the features of the SHG tailoring effect for all
stacking angles (Figs. 2e and 3e). Supplementary Table 2 lists a
detailed comparison between the experimental and modeling
results, which shows an excellent agreement, yielding strong
support to the scenario for the interfacial polar coupling between
MoS2 and PZT DW.

Comparing the results shown in Fig. 2b, e, it is clear that the
lateral polarization of PZT DW can replace an optical analyzer to
provide efficient filtering of the light polarization for the SHG
signal of MoS2. It further enhances or quenches the SHG intensity
for the selected light polarization depending on the underlying
DW chirality. Compared with the existing optical filter
technologies, which are macroscopic in terms of dimensions,
time consuming in terms of optical set-up, and cannot be
programmed at the nanoscale, the MoS2/PZT heterostructure has
the distinct advantages in terms of size scaling and being
nanoscale reconfigurable, offering the opportunities to achieve
on-chip generation and smart filtering of SHG signals for nano-
optics.

Transmitted SHG response of 1L MoS2/PZT heterostructures.
While bare PZT domains (Supplementary Fig. 3) and MoS2 on
Gel-Films (Supplementary Fig. 4) exhibit similar SHG responses
in the reflection and transmission modes, the MoS2/PZT het-
erostructure reveals qualitatively different SHG tailoring effects in
these two detection modes. Figure 4a displays the transmitted
SHG image of the same domain structure shown in Fig. 2e.
Overall, the maximum intensity for the transmitted light is
comparable or lower than that for the reflection mode depending
on PZT thickness, as the signal is collected through the oxide
layers (Supplementary Fig. 4g, h). In sharp contrast to the
reflected SHG image, a clear signal contrast emerges between the
Pup and Pdown domains, rather than at the DWs, in the

transmission mode. Only when a horizontal analyzer is applied
does the SHG signal for the vertical ([010]) DWs become
appreciable (Fig. 4b), similar to that observed in the reflected
mode (Fig. 2h). We also note that the relative strength of the SHG
intensity between the regions of the Pup and Pdown domains
depends on the polarizer angle (Fig. 4c). Figure 4d shows the
cross-sectional SHG signal profiles for the same region in both
transmission (Fig. 4a) and reflection (Fig. 2e) modes. For com-
parison, the signals are normalized to the intensity difference
between the even (Ieven) and odd (Iodd) horizontal DWs, defined
as (I− Ieven)/(Iodd− Ieven). It clearly illustrates that the signal
contrast is either tailored by the uniformly polarized domains or
the DWs in these two detection modes.

To understand the origin for this ferroelectric polarization-
dependent SHG response, we quantitatively compared the signal
intensity in 1L MoS2/PZT heterostructures with different PZT
layer thicknesses for both detection modes (Supplementary
Fig. 7). As shown in Fig. 4e, the intensity of the reflected SHG
signal does not exhibit apparent dependence on PZT thickness,
consistent with its interfacial origin. The transmitted light
intensity, on the other hand, increases monotonically with the
layer thickness of PZT for both Pup and Pdown domains, with
the signal at the Pup domain approaching the intensity for the
reflected signal in the heterostructure with 50 nm PZT, which
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Fig. 4 Transmitted SHG response of 1L MoS2/PZT interface. a–c SHG
mapping in transmission mode of the same MoS2/PZT sample shown in
Fig. 2 taken with no analyzer applied (a, c) and with a horizontal analyzer
applied (b). The red solid (yellow open) arrows mark the incident light
(analyzer) polarization. The crystalline orientations of PZT and MoS2 are
shown as insets in a. The scale bars are 2 μm. All images were taken at the
excitation laser power of 20mW. d Normalized SHG intensity profiles
obtained in the transmission (T-SHG) and reflection (R-SHG) modes along
the black dotted line in a. The dashed lines serve as the guide to the
eye. e Averaged SHG intensity as a function of PZT thickness taken on the
Pup (squares) and Pdown (triangles) domains in both reflection (open
symbols) and transmission (solid symbols) modes at excitation laser power
of 20mW.
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suggests that this tailoring effect is related to the bulk state of
PZT. Varying the focus plane for the transmission image shows
that the SHG signal is fully attenuated in the STO substrate
(Supplementary Fig. 8), confirming that the relevant dielectric
layer for this tuning effect is indeed PZT. The observed film
thickness dependence is opposite to what is expected owing to
light absorption in a non-transparent dielectric layer. We thus
speculate that the tailoring of the transmitted SHG signal
originates from a possible cavity effect of the PZT layer through
constructive interference among multiple reflections. To verify
this scenario, however, requires working with much thicker PZT
films, ideally larger than half wavelength of the SHG light (λair/
2nPZT ≈ 83 nm, with nPZT ≈ 2.4). This is challenging as the PZT
films thicker than 50 nm tend to relax the epitaxial strain through
forming a-domains32, making the local polarization orientation
not well defined. The SHG contrast between the regions on the
Pup and Pdown domains, on the other hand, depends sensitively on
the light polarization and can reverse the relative strength (Fig. 4a,
c). The difference is thus likely phase related rather than due to
the doping difference and may originate from the polarization-
dependent surface reconstruction in PZT thin films36.

Discussion
In summary, we report an interface-driven nonlinear optical
filtering effect in 1L MoS2/ferroelectric heterostructures. The
tailoring effect for the reflected SHG signal is solely determined
by the polar symmetry of MoS2 and PZT DW. The transmitted
SHG signal, in sharp contrast, is sensitively tuned by the out-of-
plane ferroelectric polarization rather than the DW, which is
attributed to the bulk state of PZT. Our study points to a new
material platform for the functional design of novel interfacial
optical response via ferroelectric domain patterning. This
approach can be widely applied to vdW materials and hetero-
structures with broken inversion symmetry, paving the way for
achieving nanoscale electrically programmable optical filtering
applications.

Methods
Preparation and characterization of epitaxial PZT. We deposited 20–50-nm-
thick epitaxial PZT films on 10 nm LSMO-buffered (001) SrTiO3 substrates
(5 mm × 5mm × 0.5 mm) via off-axis radio frequency magnetron sputtering. The
LSMO layer was deposited at 650 °C in 120 mTorr process gas composed of Ar and
O2 (ratio 2:1). We then deposited the PZT layer in situ at 490 °C in 150 mTorr
process gas (Ar:O2= 2:1). The PZT films are c-axis oriented with out-of-plane
polar axis (Supplementary Fig. 1a). AFM images show smooth surface morphology
with 2–3 Å surface root mean square roughness.

Preparation of MoS2/PZT heterostructure. 1L and few-layer MoS2 flakes were
mechanically exfoliated on elastomeric films (Gel-Film® WF × 4 1.5 mil from Gel-
Pak) from bulk single crystals. Selected flakes were transferred on top of the pat-
terned domain structures using an all-dry transfer technique40. The Gel-Film with
exfoliated MoS2 was flipped upside down and anchored with a high-precision XYZ
manipulator. The PZT sample was placed on a rotatable hot plate. We then aligned
the MoS2 sample with the patterned domains under an optical microscope with
submicron precision. The uncertainty of stacking angle θ is 2°–6°. The details of the
sample alignment during transfer can be found in Supplementary Note 2 and
Supplementary Fig. 4.

PFM measurements. PFM studies were carried out using a Bruker Multimode 8
AFM. The measurements were performed in contact mode using conductive PtIr-
coated tips (SCM-PIT, spring constant k of 1–5 Nm−1, resonant frequency fo of
60–100 kHz). The coercive voltage of the PZT films is about +2 V (−3 V) for the
Pup (Pdown) state (Supplementary Fig. 1b). For domain writing, a ±7 V DC bias was
applied to the AFM tip while scanning, and the LSMO bottom layer was grounded.
For imaging, an AC voltage of 0.5 V was applied at close to the contact resonant
frequency. The resolution of PFM is about 5 nm for our experimental set-up41,
which cannot resolve the intrinsic DW width.

Raman and PL measurements. Raman and PL measurements were performed on
a micro-Raman system (Renishaw InVia plus, Renishaw) at room temperature. An

Ar+ laser of about 200 μW was focused to a 1 μm beam spot on the sample at
normal incidence. Both Raman and PL spectra were collected in reflection mode
through a ×50 objective lens with an accumulation time of 10 s.

SHG measurements. The experimental set-up for SHG imaging is shown in
Fig. 1a. The laser source for SHG microscopy is provided by a mode-locked Ti:
Sapphire fs laser (MaiTai DeepSee HP, SpectraPhysics) with a fixed wavelength of
800 nm, duration of 100 fs, total output power of 2.95W, and repetition rate of
80 MHz. The laser beam passed a polarizer with normal incidence and then was
guided by mirrors into a laser scanning microscope (LSM). In the LSM, the laser
beam was linearly focused onto the sample surfaces using a water-immersed
Olympus objective lens (1.05 NA, ×25). To avoid water contact, a 0.17-mm thin
glass cover slide was placed above the sample surface, forming a thin air gap
between the sample and the cover slide. The sample was place on a glass slide
(1 mm), lying in the x–y plane, which is placed above the 1” diameter stage
opening. The incident light was transversely polarized and directed to the sample
surface along −z direction, and the excited SHG signals were collected in both
reflection (+z) and transmission (−z) geometries by photomultiplier detectors
(photomultiplier tubes (PMTs)). Before the SHG signals enter the PMTs, the
excitation laser beam was filtered out by an IR cut filter (OD >4 @ 692–1100 nm).
A long working distance (WD) condenser (NA 0.8/WD 5.7 mm) was used for the
transmission signal collection. In the LSM, the transmission and reflection modes
share the same focus plane using the same type of objective lens (NA 1.05/water
immersed/WD 2.0 mm, ×25), so both measurements can be performed simulta-
neously. The focusing to the MoS2/PZT interface was performed through the
reflected mode. The signal was first collected with no analyzer inserted and then
with an analyzer inserted in different angles with respect to the polarizer orien-
tation. The analyzer is a Thorlab LPVISE100-A with operating wavelength range of
400–700 nm. The band-pass filter used for SHG imaging is a Semrock FF01-390/40
(Tavg >93% @ 370–410 nm, center wavelength of ~390 nm, and bandwidth of
~40 nm). The diffraction limit of the excitation laser beam (spot size) was esti-
mated to be λ/2NA= 380 nm. Owing to the second-order nonlinearity of the SHG
light, the spatial resolution was estimated to be ~300 nm.

The SHG mapping plots, unless otherwise specified, are the raw data collected
by the PMTs without modification. During the SHG measurements, the PMTs in
the LSM were set on the photon count mode, so the responses of the PMTs are
proportional to the number of actual SHG photons detected by the PMTs but are
not calibrated to the light intensity in units of W/m2. The SHG mapping results
were expressed in terms of arbitrary units and were proportional to the actual SHG
intensity detected by the PMTs. The intensity level can be directly compared if they
were taken at the same laser power.

Data availability
All relevant data that support the findings of this study are available from the
corresponding authors upon request.
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