常亚超

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:工程热物理

办公地点:能源与动力学院809

联系方式:15140422034

电子邮箱:changyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Evaluation of variable compression ratio (VCR) and variable valve timing (VVT) strategies in a heavy-duty diesel engine with reactivity controlled compression ignition (RCCI) combustion under a wide load range

点击次数:

论文类型:期刊论文

发表时间:2021-03-04

发表刊物:FUEL

卷号:253

页面范围:114-128

ISSN号:0016-2361

关键字:Reactivity controlled compression ignition (RCCI); Variable compression ratio (VCR); Variable valve timing (VVT); Combustion control; Fuel consumption; Euro 6 emission regulations

摘要:Variable compression ratio (VCR) and variable valve timing (VVT) are two effective strategies to adjust the effective compression ratio, which is beneficial for controlling the combustion process of advanced combustion modes. In this study, systematic evaluation of the two strategies was conducted based on reactivity controlled compression ignition (RCCI) engine in terms of combustion process control, fuel efficiency, and emission characteristics. By coupling an updated KIVA-3V code with the genetic algorithm, the combustion of a heavy-duty RCCI engine with VCR and VVT strategies was respectively optimized, aiming to simultaneously realize high fuel efficiency and low emissions. The optimal VCR and VVT strategies were compared under a wide load range. The results indicate that, at low and mid loads, high effective compression ratio, large premix ratio, and early fuel injection can be utilized to realize Euro 6 nitrogen oxides (NOx) limit with ultra-low soot emissions and low fuel consumption for both VCR and VVT strategies. The increase of load from low to mid narrows the optimal range of exhaust gas recirculation (EGR) rate for VVT strategy whereas the range for VCR strategy is still wide. At high load, compared to VVT strategy, a further decreased effective compression ratio can be utilized for VCR strategy, which allows early fuel injection, leading to the improvements of fuel efficiency and soot emissions. This suggests that the VCR strategy is more practical for high-load operation of RCCI combustion and the commercialization the RCCI engine in the future compared to VVT strategy.