• 更多栏目

    王旭珍

    • 教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化学学院
    • 学科:物理化学. 化学工艺
    • 办公地点:西校区化工综合楼C202
    • 联系方式:0411-84986073
    • 电子邮箱:xzwang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Ultrasmall MoS2 Nanosheets Mosaiced into Nitrogen-Doped Hierarchical Porous Carbon Matrix for Enhanced Sodium Storage Performance

    点击次数:

    论文类型:期刊论文

    第一作者:Tang, Yongchao

    通讯作者:Zhao, ZB; Qiu, JS (reprint author), Dalian Univ Technol, Sch Chem Engn, Liaoning Key Lab Energy Mat & Chem Engn, State Key Lab Fine Chem,PSU DUT Joint Ctr Energy, Dalian 116024, Peoples R China.

    合写作者:Zhao, Zongbin,Wang, Yuwei,Dong, Yanfeng,Liu, Yang,Wang, Xuzhen,Qiu, Jieshan

    发表时间:2017-01-20

    发表刊物:ELECTROCHIMICA ACTA

    收录刊物:SCIE、EI、Scopus

    卷号:225

    页面范围:369-377

    ISSN号:0013-4686

    关键字:MoS2 nanosheets; nitrogen-doping; hierarchical porous carbon; anode materials; sodium ion batteries

    摘要:MoS2 has recently been regarded as a promising anode material for sodium ion batteries (SIBs). However, it remains challenging to attain high-performance MoS2-based anodes for SIBs integrated robust cyclability with rate capability more cheaply and scalably until now. Herein, via a facile polysterene nanosphere (PS)-templated sol-gel method, nitrogen-doped hierarchical porous carbon (NHPC) matrix mosaiced with ultrasmall MoS2 nanosheets (MoS2@NHPC) has been synthesized as anode for SIBs. In half batteries, the MoS2@NHPC shows high reversible capacity (500 mA h g (1) at 0.1 A g (1)), excellent rate capability (330 mA h g (1) at 5 A g (1)) and robust cycling stability (340 mA h g (1) at 1 A g (1) over 550 cycles). Moreover, when coupled with the Na3V2(PO4)(3) (NVP) cathode in a full battery, the MoS2@NHPC anode also displays high reversible specific capacity of 350 mA h g (1) at 0.2 A g (1), and robust cycling stability of over 130 cycles. The excellent performance is benefited from the uniform mosaic of ultrasmall MoS2 nanosheets into the NHPC, which effectively facilitates the ionic and electronic conductivity, and accommodates the volume changes during desodiation-sodiation process. Such design may enlighten to develop the other high-performance materials for energy storage. (C) 2016 Elsevier Ltd. All rights reserved.