都健

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程

办公地点:大连理工大学西部校区化工实验楼D段305室

联系方式:130-1948-9068(手机)

电子邮箱:dujian@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Computer-aided reaction solvent design considering inertness using group contribution-based reaction thermodynamic model

点击次数:

论文类型:期刊论文

发表时间:2019-12-01

发表刊物:CHEMICAL ENGINEERING RESEARCH & DESIGN

收录刊物:EI、SCIE

卷号:152

页面范围:123-133

ISSN号:0263-8762

关键字:CAMD; MINLP model; Reaction solvent; Group contribution; Inertness

摘要:Solvents have been widely used in process manufacturing industries. When involved in liquid-phase organic synthesis reactions, solvents can reduce the activation energy of reactions between the reactants and the transition state through solvation effects. However, undesirable side reactions can also be performed between solvents and the reaction system (the reactants and products), which should be avoided for producing unnecessary byproducts in the reaction system. In this paper, an optimization-based methodology is proposed for inert reaction solvent design. In this method, first, a Group Contribution (GC)-based reaction thermodynamic model is developed to quantitatively identify the thermodynamic feasibility of side reactions between solvents and the reaction system. Then, the SMARTS (SMiles Arbitrary Target Specification)-based reaction generation algorithm is employed to generate possible side reactions between solvents and the reaction system, helping to integrate the developed GC-based reaction thermodynamic model with the Computer-Aided Molecular Design (CAMD) problem for designing inert reaction solvents through the formulation and solution of the Mixed-Integer Non-Linear Programming (MINLP) model. Due to the nonlinear equations in the MINLP model, a decomposition-based solution strategy is employed to solve the optimization problem. Finally, two case studies are presented to demonstrate the feasibility and effectiveness of the proposed optimization-based methodology for promising inert reaction solvent design. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.