黄丽萍

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学. 微生物学

办公地点:环境楼B615

联系方式:18604286531

电子邮箱:lipinghuang@dlut.edu.cn

其他联系方式Other Contact Information

电话 : 18604286531

email : lipinghuang@dlut.edu.cn

扫描关注

个人简介Personal Profile

大连理工大学环境学院教授,博士,博士生指导教师,研究方向为污染物(废水、废气、废渣)生物资源化与能源化。分别于2001.111994.7、1991.7获大连理工大学 环境工程博士生物化工硕士、无机化工学士学位。分别在2017.8-2018.2 与美国哥仑比亚大学和宾夕法尼亚州立大学2015.9-2015.11 与英国拉夫堡大学、2007.5-2008.6 与美国宾夕法尼亚州立大学、2006.1-2008.12 与丹麦技术大学、2002.4-2003.3 与澳大利亚昆士兰大学等国际知名大学院士/教授开展合作研究。

近年来,适应国家对资源环境与清洁能源的战略需求,以国际科学前沿为导向,结合环境领域研究热点和难点,开展了多学科交叉的环境生物电化学与清洁能源技术的相关基础理论与应用研究。近年承担和主持国家自然科学基金-面上项目6项,教育部高等学校博士学科点专项科研基金-博导类项目1项、中丹科技合作项目1项、其它企事业合作项目5项、以技术负责人完成美国企业和丹麦科技部项目2项。以第一作者或通讯作者在国内外主流SCI期刊如Appl Catal B-Environ (IF: 19.503)、Chem Eng J (IF: 13.273)、Water Res (IF: 11.236)、J Hazard Mater (IF: 10.588)、J Power Sources (IF: 9.127)、Bioresour Technol (IF: 9.642)、Environ Sci Technol (IF: 9.028)、Sensor Actuat B-Chem (IF: 7.460)、Sep Purif Technol (IF: 7.312)、Chemosphere (IF: 7.086)、Biotechnol Bioeng (IF: 4.126)、Appl Microbiol Biotechnol (IF: 4.813)、Electrochim Acta (IF: 6.901)、Bioelectrochemistry (IF: 5.373)、Sci Total Environ (IF: 7.963)、ChemElectroChem (IF: 4.590)、Inter J Hydrogen Energy (IF: 5.816)、J Photochem Photobiol A-Chem (4.291)等发表论文116篇;Web of Science他引4600余次,均篇引用35.6,H-指数39;获“中国百篇最具影响国际学术论文”称号1次;2020年、2021年、2022年均入选斯坦福大学“全球顶尖(1.5%)科学家”榜单出版英文专著/章2部;获省部级科学技术贰等奖1项(排名第2);授权国家发明专利11项。

主要研究方向:
 污染物/废弃物生物资源化与能源化;环境生物电化学系统-微生物燃料电池与微生物电解池:将废水/废气中的污染物降解、利用和转化的同时,生产清洁能源(电、氢气等)及有价化学产品(乙酸等)的多重功效;
 典型企业生产废水清洁高效处理同步资源回收工艺开发与示范;新型电极材料制备、表征与应用。


2003年-至今发表的主要论文包括:

1) Synergistic induced charge transfer switch by oxygen vacancy and pyrrolic nitrogen in MnFe2O4/g-C3N4 heterojunctions for efficient transformation of bicarbonate to acetate in photo-assisted MES. Applied Catalysis B: Environmental (2022) (in press)

2) Synergistic light irradiation and circuital current for efficient mineralization of recalcitrant organics and sequential recovery of heavy metals from etching terminal wastewater using photo-assisted bioelectrochemical systems. Journal of Power Sources 522 (2022) 230991.

3) Cellular electron transfer in anaerobic photo-assisted biocathode microbial electrosynthesis systems for acetate production from inorganic carbon (HCO3-). Chemical Engineering Journal 431 (2022) 134022.

4)Physiological metabolism of electrochemically active bacteria directed by combined acetate and Cd(II) in single-chamber microbial electrolysis cells. Journal of Hazardous Materials 424 (2022) 127538.

5)Efficient production of acetate from inorganic carbon (HCO3-) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes. Applied Catalysis B: Environmental (2021) 118611.

6)Efficient conversion of bicarbonate (HCO3-) to acetate and simultaneous heavy metal Cr(VI) removal in photo-assisted microbial electrosynthesis systems combining WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens electrotroph. Chemical Engineering Journal 406 (2021) 126786.

7)Mixotrophic bacteria for environmental detoxification of contaminated waste and wastewater. Applied Microbiology and Biotechnology 105 (2021) 6627-6648.

8)An external magnetic field moderating Cr(VI) stress for simultaneous enhanced acetate production and Cr(VI) removal in microbial electrosynthesis system. Environmental Research 193 (2021) 110550.

9) Synergetic interaction of magnetic field and loaded magnetite for enhanced acetate production in biocathode of microbial electrosynthesis system. Intertional Journal of Hydrogen Energy 46 (2021) 7183-7194.

10) One-step hydrothermal method preparation of Ni/carbon thin film electrode for efficient electroreduction of imidacloprid. New Journal of Chemistry 45 (2021) 3469-3478.

11) Acetate production from inorganic carbon (HCO3-) in photo-assisted biocathode microbial electrosynthesis systems using WO3/MoO3/g-C3N4 heterojunctions and Serratia marcescens species. Applied Catalysis B: Environmental 267 (2020) 118611.

12) Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. Chemosphere 243 (2020) 125317.

13) An external magnetic field for efficient acetate production from inorganic carbon in Serratia marcescens catalyzed cathode of microbial electrosynthesis system. Biochemical Engineering Journal 155 (2020) 107467.

14Preferable individual rather than sequential feedings under air exposure conditions for deposition of W and Mo in stacked bioelectrochemical systems. Environmental Engineering Science 37 (2020) 439-449.

15) Synergetic magnetic field and loaded Fe3O4 for simultaneous efficient acetate production and Cr(VI) removal in microbial electrosynthesis systems. Chemical Engineering Journal Advance 2 (2020) 100019.

16Comparison of two different nickel oxide films for electrochemical reduction of imidacloprid. RSC Advance 10 (2020) 3030-3047.

17) Mutual benefits of acetate and mixed Tungsten and Molybdenum for their efficient removal in 40 L microbial electrolysis cells. Water Research 162 (2019) 358-368.

18)  Intensified degradation and mineralization of antibiotic metronidazole in photo-assisted microbial fuel cells with Mo-W catalytic cathodes under anaerobic or aerobic conditions in the presence of Fe(III). Chemical Engineering Journal 376 (2019) 119566.

19Electrosynthesis of acetate from inorganic carbon (HCO3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES). Journal of Hazardous Materials 371 (2019) 463-473.

20Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia marcescens biofilms and plankton cells in microbial electrosynthesis systems. Science of the Total Environment 666 (2019) 114-125. 

21) Sequential anaerobic and electro-Fenton processes mediated by W and Mo oxides for degradation/mineralization of azo dye methyl orange in photo assisted microbial fuel cells. Applied Catalysis B: Environmental 245 (2019) 672-680.

22) A loop of catholyte effluent feeding to bioanodes for complete recovery of Sn, Fe, and Cu with simultaneous treatment of the co-present organics in microbial fuel cells. Science of the Total Environment 651 (2019) 1698-1708.

23) Book chapter 6: Recovery of metals from wastes using bioelectrochemical systems: from bioelectrorespiration to bioelectrodegradation. Book title: Bioelectrochemistry stimulated environmental remediation. ISBN: 978-981-10-8541-3. Springer Nature. Jan 2019. pp.121-156

24) Efficient in-situ utilization of caustic for sequential recovery and separation of Sn, Fe, and Cu in microbial fuel cells. ChemElectroChem 5 (2018) 1658-1669.

25) Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material. Journal of Hazardous Materials 353 (2018) 348-359.

26) Removal of binary Cr(VI) and Cd(II) from the catholyte of MFCs and determining their fate in EAB using fluorescence probes. Bioelectrochemistry 122 (2018) 61-68.

27) Cooperative light irradiation and in-situ produced H2O2 for efficient tungsten and molybdenum deposition in microbial electrolysis cells. Journal of Photochemistry and Photobiology A: Chemistry 357 (2018) 156-167.

28) Imaging and distribution of Cd(II) ions in electrotrophs and its response to current and electron transfer inhibitor in microbial electrolysis cells. Sensors and Actuators B: Chemical 255 (2018) 244-254.

29) Dependency of migration and reduction of mixed Cr2O72-, Cu2+ and Cd2+ on electric field, ion exchange membrane and metal concentration in microbial fuel cells. Separation and Purification Technology 192 (2018) 78-87.

30) Response of indigenous Cd-tolerant electrochemically active bacteria in MECs towards exotic Cr(VI) based on the sensing of fluorescence probes. Frontiers of Environmental Science & Engineering 12 (2018) 7.

31) Reduction of imidacloprid by sponge iron and identification of its degradation products. Water Environment Research 90 (2018) 2049-2055.

32) Efficient W and Mo deposition and separation with simultaneous hydrogen production in stacked bioelectrochemical systems. Chemical Engineering Journal 327 (2017) 584-596.

33) Preferable utilization of in-situ produced H2O2 rather than externally added for efficient deposition of tungsten and molybdenum in microbial fuel cells. Electrochimica Acta 247 (2017) 880-890.

34) Cathodic Cr(VI) reduction by electrochemically active bacteria sensed by fluorescent probe. Sensors and Actuators B: Chemical 243 (2017) 303-310. 

35) Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioresource Technology 225 (2017) 316-325.

36) Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells. Bioelectrochemistry 114 (2017) 1-7. 

37) Impact of Fe(III) as an effective mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials. Journal of Hazardous Materials 321 (2017) 896-906. 

38) Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC-MEC system. Environmental Technology 38 (2017) 615-628. 

39) Zero valent aluminum as reducer in sodium carbonate solution for degradation of imidacloprid. Journal of the Chinese Chemical Society 64 (2017) 55-60.

40) Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells. Journal of Power Sources 307 (2016) 705-714.

41) Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresource Technology 200 (2016) 565-571.

42) Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3. International Journal of Hydrogen Energy 41 (2016) 13368-13379.

43) Cooperative redox-active additives of anthraquinone-2,7-disulphonate and K4Fe(CN)6 for enhanced performance of active carbon-based capacitors. Journal of Power Sources 324 (2016) 334-341.

44) An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method. Journal of Alloys and Compounds 671 (2016) 312-317. 

45) Adaptively evolving bacterial communities for complete and selective reduction of Cr(VI), Cu(II) and Cd(II) in biocathode bioelectrochemical systems. Environmental Science & Technology 49 (2015) 9914-9924.

46) Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. Journal of Power Sources 273 (2015) 1103-1113. 

47A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. Journal of Cleaner Production 86 (2015) 441-446. 

48) Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions. Chemical Engineering Journal 266 (2015) 121-132.

49) Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Separation and Purification Technology 147 (2015) 114-124. 

50) Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. International Journal of Hydrogen Energy 40 (2015) 184-196.

51Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal. Frontiers of Environmental Science and Engineering 9 (2015) 1084-1095.

52) Double layer capacitor based on active carbon and its improved capacitive properties using redox additive electrolyte of anthraquinonedisulphonate. Electrochimica Acta 152 (2015) 135-139.

53Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chemical Engineering Journal 253 (2014) 281-290.

54)  Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell - microbial electrolysis cell systems. Journal of Power Sources 259 (2014) 54-64. 

55) Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation 25 (2014) 615-632. 

56) Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy 39 (2014) 654-663.

57) Effects of single electrodes of Ni(OH)2 and activated carbon on electrochemical performance of Ni(OH)2 – activated carbon asymmetric supercapacitor. Materials Chemistry and Physics 143 (2014) 1164-1170.

58) Inhibition of hydrogen evolution reaction on polypyrrole-modified electrode in acid media. Journal of the Electrochemical Society 161 (2014) E23-E27. 

59) Electrode as sole electrons donor for enhancing decolorization of azo dye by an isolated Pseudomonas sp. WYZ-2. Bioresource Technology 152 (2014) 530-533. 

60) Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: optimization and characterization. Chemical Engineering Journal 243 (2014) 355-363. 

61Improved dechlorination and mineralization of 4-chlorophenol in a sequential biocathode-bioanode bioelectrochemical system with mixed photosynthetic bacteria. Bioresource Technology 158 (2014) 32-38.

62) Copper catalysis for enhancement of cobalt leaching and acid utilization efficiency in microbial fuel cells. Journal of Hazardous Materials 262 (2013) 1-8.

63) Bioanodes/biocathodes formed at optimal potentials enhance subsequent pentachlorophenol degradation and power generation from microbial fuel cells. Bioelectrochemistry 94 (2013) 13-22.

64) Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells. Chemical Engineering Journal 220 (2013) 72-80. 

65) Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology 128 (2013) 539-546. 

66) 用于生物电化学系统的石墨烯电极. 物理化学学报. 29 (2013) 889-896. 

67A facile gas-liquid co-deposition method to prepare nanostructured nickel hydroxide for electrochemical capacitors. Journal of Inorganic and Organometallic Polymers and Materials 23 (2013) 1425-1430.

68) Combined effects of enrichment procedure and non-fermentable or fermentable co-substrate on performance and bacterial community for pentachlorophenol degradation in microbial fuel cells. Bioresource Technology 120 (2012) 120-126. 

69) Mineralization of pentachlorophenol with enhanced degradation and power generation from air cathode microbial fuel cells. Biotechnology and Bioengineering 109 (2012) 2211-2221.

70) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology 111 (2012) 167-174. 

71Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and pontentiodynamic conditions. Journal of Hazardous Materials 225 (2012) 15-20.

72) Book chapter: Wastewater treatment with concomitant bioenergy production using microbial fuel cells. Water Treatment and Pollution Prevention: Advances in Research. Editors: Sharma SK, Sanghi R, Springer press, London. 2012, p.405-451.

73Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell. Bioresource Technology 102 (2011) 8762-8768. 

74) Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology 45 (2011) 5025-5031.

75) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology 102 (2011) 316-323.

76) Bioelectrochemical systems for efficient recalcitrant wastes treatment. Journal of Chemical Technology & Biotechnology 86 (2011) 481-491.

77) Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chemical Engineering Journal 166 (2011) 652-661.

78) Electricity generation and microbial community response to substrate changes in microbial fuel cell. Bioresource Technology 102 (2011) 1166-1173.

79) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosystem Engineering 33 (2010) 937-945.

80) A microbial fuel cell–electro-oxidation system for coking wastewater treatment and bioelectricity generation. Journal of Chemical Technology and Biotechnology 85 (2010) 621-627.

81) Comparative investigation on electroreduction of Cu(II) using polypyrrole electrode and stainless steel electrode. Journal of Applied Electrochemistry 40 (2010) 427-433.

82) Performance of stainless steel mesh cathode and PVDF-graphite cathode in microbial fuel cells. American Institute of Physics Proceedings. 1251(2010) 316-319.

83) Electricity generation and microbial community analysis of wheat straw biomass powered microbial fuel cells. Applied and Environmental Microbiology (2009) 75: 3389-3395.

84) Reducing organic loading in industrial effluents using microbial fuel cells. Environmental Technology 30 (2009) 499-504.

85) Electricity production from pentose using a mediator-less microbial fuel cell. Bioresource Technology 99 (2008) 4178-4184.

86) Effect of humic acids on electricity production integrated with xylose degradation in a microbial fuel cell. Biotechnology and Bioengineering 100 (2008) 413-422.

87) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied Microbiology and Biotechnology 80 (2008) 349-355.

88) Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Applied Microbiology and Biotechnology 80 (2008) 655-664.

89) Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources 179 (2008) 274-279.

90) Cathodic reduction of hexavalent chromium [Cr (VI)] coupled with electricity generation in microbial fuel cells. Biotechnology Letters 30 (2008) 1959-1966.

91Electricity generation in microbial fuel cells: using humic acids as a mediator. Journal of Biotechnology 136 (2008) s474-475.

92) Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzaeBioprocess and Biosystems Engineering. 30 (2007) 135-140.

93) Kinetics of simultaneous saccharification and fermentation for lactic acid production by Rhizopus oryzae and Rhizopus arrhizus. Biochemical Engineering Journal 23 (2005) 265-276.

94) Biotechnological production of lactic acidintegrated with potato wastewater treatment by Rhizopusarrhizus. Journal of Chemical Technology and Biotechnology 78 (2003) 899-906.

95) Rhizopus arrhizus 36017 – a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnology Letters 25 (2003) 1983-1987.


授权国家发明专利:
1)     一种清洁高效矿化偶氮染料的方法.ZL 201711156132.3

2)  一种清洁的彻底处理钨钼有机混合废水同步回收金属且副产氢气的方法. ZL201810685425.9

3) 利用微生物燃料电池从钼锡酸盐混合溶液中分离并回收钼锡方法. 授权专利号:ZL 201611002755.0

4) 一种清洁有效的从酸性废蚀刻溶液中分离并回收铜、锡和铁的方法.专利号:ZL 201710316396.4

5) 一种清洁有效的从钨钼酸盐混合溶液中分离钨钼的方法. 申请号或专利号: ZL 201610031987.2

6) 一种紧凑型生物电化学反应器回收铜、镉并制备镉青铜前体的方法. 申请号或专利号:ZL 201410669734.9

7) 一种提高微生物燃料电池驱动微生物电解池回收多金属的方法. 申请号或专利号: ZL 201410175987.0

8) 一种微生物燃料电池自驱动微生物电解池耦合系统从钴酸锂中回收单质钴的方法.申请号或专利号: ZL 201310145779.1

9) 一种提高微生物燃料电池浸取钴酸锂中Co(III)的方法. 申请号或专利号: ZL 201310071793.1

10) 化学阴极微生物燃料电池浸出钴酸锂中Co(III)的方法. 申请号或专利号:ZL 201210132111.9

11) 利用微生物电解池从钴酸锂中“一步式”回收单质钴的方法.申请号或专利号:ZL 201210153753.7.


近年承担的主要课题:

1.  国家自然科学基金-面上项目:“兼养电化学活性菌降解/矿化蚀刻液末端废水同步梯级回收分离重金属研究”(No. 52070032) (2021.1-2024.12)负责人;

2.  中央高校基本科研业务费可见光辅助铁酸锰/g-C3N4复合阴极提高微生物电还原无机碳合成有机酸同步阳极去除有机物研究” (DUT21LAB101) (2021.01-2022.12)负责人;

3. 国家自然科学基金-面上项目:“重金属胁迫下EAB同时高效去除重金属、产氢与固定CO2一体化过程与调控机制”(No. 21777017) (2018.1-2021.12)负责人;

4. 国家自然科学基金-面上项目:“自驱动MFC-MEC梯级回收钨钼锡的化学阴极互作与Fe(III)强化效应研究”(No. 51578104) (2016.1-2019.12)负责人;

5. 国家自然科学基金-面上项目: “多金属作用生物阴极电化学系统与荧光分子探针定量化电子传递过程研究”(No. 21377019) (2014.1-2017.12)负责人;

6.  国家自然科学基金-面上项目: 以废旧锂离子电池中Co(III)为电子受体的新型生物电化学系统研究(No. 51178077) (2012.1-2015.12)负责人;

7.  国家自然科学基金-面上项目: “微生物燃料电池强化多氯酚共代谢降解研究”(No. 21077017) (2011.1-2013.12)负责人;

8.  城市水资源与水环境国家重点实验室开放基金-重点基金(ZX20160612)“空气阴极微生物燃料电池高效回收钨钼过程与机制”(2017.1-2018.12)负责人;

9.   教育部:2012年度高等学校博士学科点专项科研基金-博导类:“基于Cr(III)荧光分子探针识别的生物阴极微生物燃料电池电子传递机制研究”( 20120041110026) (2013.1-2015.12)负责人;

10.  城市水资源与水环境国家重点实验室开放基金“共代谢基质中五氯酚降解的微生物燃料电池作用研究”(HC201021) (2010.7.1-2012.6.30)负责人;

11.  能源清洁利用国家重点实验室开放基金“以五氯酚为电子受体的生物阴极微生物燃料电池研究”(No. ZJUCEU2010001)(2010.9.1-2011.8.31)负责人;

12.  “能源+X”交叉学科重点资助项目“高电能输出同步Cr(VI)去除的生物阴极微生物燃料电池研究(DUTNYX2009101)(2009.1-2011.12)负责人;

13.  美国Eagle纸回用公司污水处理项目“微生物燃料电池处理纸回用污水过程研究”(2007-2008);技术负责人;

14.  教育部留学基金委“微生物燃料电池与污水处理一体化技术研究”(2007-2008)负责人;

15.  丹麦科技部“二步式生物过程中纤维素利用与电能产出的微生物燃料电池研究”(2006-2008)负责人;

16.  丹麦科技部“生物质的微生物燃料电池利用与转化”(2007.1-2008.12),负责人;

17.  教育部留学回国人员科研启动基金“鱼粉加工废水的微生物资源化”(2004-2005)负责人。



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 废弃物生物资源化与能源化;环境生物电化学技术与工程;典型企业生产废水清洁高效处理同步资源回收工艺与示范;微生物电合成与生物炼制;微生物燃料电池与微生物电解池;新型电极材料;电化学活性微生物;新型生物电化学反应器;生物能源