胡成志
开通时间:..
最后更新时间:..
胡成志副教授任职于大连理工大学能源与动力学院。于2010年获得哈尔滨工业大学学士学位,2016年获得大连理工大学博士学位,并荣获辽宁省优秀博士毕业生荣誉称号。
团队主要围绕大功率电子器件热控制、动力电池组热管理、航空航天热防护、先进抗磨减阻技术等领域开展基础研究和应用技术开发。开发了回路热管、大功率平板热管、热虹吸管、热压转换强化传热器件、大功率蓄热装置等多种先进热管理系统,并拥有发明专利3项,软件著作权1项,实用新型专利2项,正在申请发明专利4项。近5年在电子器件热管理领域主持了国家自然科学基金项目和JG院所委托项目,作为骨干成员参与了国家重点研发计划项目、JW项目、国家自然科学基金重点项目等,发表国际SCI期刊40余篇。课题组经费充足,培养的研究生进入国内顶尖相关行业研究所工作,欢迎广大同学保送/报考研究生。
研究方向:
电子器件热管理;
航空航天热管理;
蓄热技术研究;
热管传热技术研究。
主持项目:
国家自然科学基金面上项目;
国家自然科学基金青年项目;
辽宁省自然科学基金面上项目;
JG院所委托项目;
参与项目:
国家重点研发计划;
国际合作重点项目;
JCJQ重大项目;
任职经历:
2021.1-今 副教授 硕导 博导
2017.5-2020.12 讲师 硕导
近5年部分发表论文:
(1)Hu, C.; Pei, Z.; Shi, L.; Tang, D.; Bai, M., Phase transition properties of thin liquid films with various thickness on different wettability surfaces. International Communications in Heat and Mass Transfer 2022, 135, 106125.
(2)Hu, C.; Shi, L.; Yi, C.; Bai, M.; Li, Y.; Tang, D., Mechanism of enhanced phase-change process on structured surface: Evolution of solid-liquid-gas interface. International Journal of Heat and Mass Transfer 2023, 205, 123915.
(3)Hu, C.; Tang, D.; Lv, J.; Bai, M.; Zhang, X., Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads. Physical Chemistry Chemical Physics 2019, 21 (32), 17786-17791.
(4)Hu, C.; Li, H.; Tang, D.; Zhu, J.; Wang, K.; Hu, X.; Bai, M., Pore-scale investigation on the heat-storage characteristics of phase change material in graded copper foam. Applied Thermal Engineering 2020, 178, 115609.
(5)Hu, C.; Sun, M.; Xie, Z.; Yang, L.; Song, Y.; Tang, D.; Zhao, J., Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications. Applied Thermal Engineering 2020, 180, 115845.
(6)Hu, C.; Li, H.; Wang, Y.; Hu, X.; Tang, D., Experimental and numerical investigations of lithium-ion battery thermal management using flat heat pipe and phase change material. J. Energy Storage 2022, 55, 105743.
(7)Hu, C.; Lv, J.; Bai, M.; Zhang, X.; Tang, D., Molecular dynamics simulation of effects of nanoparticles on frictional heating and tribological properties at various temperatures. Friction 2020, 8 (3), 531-541.
(8)Wang, K.; Hu, C.; Cai, Y.; Li, Y.; Tang, D., Investigation of heat transfer and flow characteristics in two-phase loop thermosyphon by visualization experiments and CFD simulations. International Journal of Heat and Mass Transfer 2023, 203, 123812.
(9)Wang, K.; Hu, C.; Jiang, B.; Hu, X.; Tang, D., Numerical simulation on the heat transfer characteristics of two-phase loop thermosyphon with high filling ratios. International Journal of Heat and Mass Transfer 2022, 184, 122311.
(10)He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger. International Journal of Refrigeration 2022, 138, 52-60.
(11)He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Visualized-experimental investigation on a mini-diameter loop thermosyphon with a wide range of filling ratios. International Communications in Heat and Mass Transfer 2022, 133, 105973.
(12)He, Y.; Hu, C.; Li, H.; Jiang, B.; Hu, X.; Wang, K.; Tang, D., A flexible image processing technique for measuring bubble parameters based on a neural network. Chemical Engineering Journal 2022, 429, 132138.
(13)He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Reliable predictions of bubble departure frequency in subcooled flow boiling: A machine learning-based approach. International Journal of Heat and Mass Transfer 2022, 195, 123217.
(14)He, Y.; Sun, Z.; Hu, C.; Wang, Z.; Li, H.; Yin, Z.; Tang, D., Data-driven engineering descriptor and refined scale relations for predicting bubble departure diameter. International Journal of Heat and Mass Transfer 2022, 195, 123078.
(15)He, Y.; Hu, C.; Hu, X.; Xu, H.; Tang, D., Assessment of the two-phase thermosyphon loop with high filling ratio under anti-gravity. International Journal of Heat and Mass Transfer 2023, 206, 123968.
(16)He, Y.; Hu, C.; Jiang, B.; Sun, Z.; Ma, J.; Li, H.; Tang, D., Data-driven approach to predict the flow boiling heat transfer coefficient of liquid hydrogen aviation fuel. Fuel 2022, 324, 124778.
(17)Shi, L.; Hu, C.; Yi, C.; Lyu, J.; Bai, M.; Tang, D., A study of interface evolution-triggering different nucleate boiling heat transfer phenomenon on the structured surfaces. International Journal of Heat and Mass Transfer 2022, 190, 122754.
(18)Shi, L.; Hu, C. Z.; Yi, C. L.; Bai, M. L.; Lyu, J. Z.; Gao, L. S., A study of how solid-liquid interactions affect flow resistance and heat transfer at different temperatures based on molecular dynamics simulations. Physical Chemistry Chemical Physics 2022, 25 (1), 813-821.
(19)Yin, X.; Hu, C.; Bai, M.; Lv, J., Effects of depositional nanoparticle wettability on explosive boiling heat transfer: A molecular dynamics study. International Communications in Heat and Mass Transfer 2019, 109, 104390.
(20)Yin, X.; Hu, C.; Bai, M.; Lv, J., Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles. International Journal of Multiphase Flow 2019, 115, 9-18.
(21)Yin, X.; Bai, M.; Hu, C.; Lv, J., Molecular dynamics simulation on the effect of nanoparticle deposition and nondeposition on the nanofluid explosive boiling heat transfer. Numerical Heat Transfer, Part A: Applications 2018, 73 (8), 553-564.
(22)Hu, C.; Tang, D.; Lv, J.; Bai, M.; Zhang, X., Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads. Physical Chemistry Chemical Physics 2019, 21 (32), 17786-17791.
(23)Yin, X.; Hu, C.; Bai, M.; Lv, J., An investigation on the heat transfer characteristics of nanofluids in flow boiling by molecular dynamics simulations. International Journal of Heat and Mass Transfer 2020, 162, 120338.
(24)Lyu, J.; Gao, L.; Zhang, Y.; Bai, M.; Li, Y.; Gao, D.; Hu, C., Dynamic spreading characteristics of droplet on the hydrophobic surface with microstructures. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2021, 610.
(25)Yi, C.; Hu, C.; Shi, L.; Bai, M.; Lv, J., Wettability of complex Long-Chain alkanes droplets on Pillar-type surfaces. Applied Surface Science, 2021; Vol. 566, p 150752.
(26)Sun, M.; Hu, C.; Zha, L.; Xie, Z.; Yang, L.; Tang, D.; Song, Y.; Zhao, J., Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam. Chemical Engineering Journal 2020, 389, 124427.
(27)Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Hu, X., Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities. Energy 2021, 237, 121540.
(28)Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Hu, X., Influence of model inclination on the melting behavior of graded metal foam composite phase change material: A pore-scale study. J. Energy Storage 2021, 44, 103537.
(29)Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Huang, W., Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit. J. Energy Storage 2021, 39, 102647.
(30)Li, H. Y.; Hu, C. Z.; He, Y. C.; Tang, D. W.; Wang, K. M., Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins. J. Energy Storage 2021, 34, 11
(31)Sun, M.; Li, M.; Hu, C.; Yang, L.; Song, Y.; Tang, D.; Zhao, J., Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number. Applied Thermal Engineering 2021, 182, 116130.
(32)Sun, M.; Yang, L.; Hu, C.; Zhao, J.; Tang, D.; Song, Y., Simulation of forced convective heat transfer in Kelvin cells with optimized skeletons. International Journal of Heat and Mass Transfer 2021, 165, 120637.
(33)Li, H.; Hu, C.; He, Y.; Sun, Z.; Yin, Z.; Tang, D., Emerging surface strategies for porous materials-based phase change composites. Matter 2022, 5 (10), 3225-3259.
(34)Li, H.; Hu, C.; He, Y.; Wang, K.; Tang, D., Pore-scale study on Rayleigh-Bénard convection formed in the melting process of metal foam composite phase change material. International Journal of Thermal Sciences 2022, 177, 107572.=
(35)Li, H.; Hu, C.; He, Y.; Zhu, J.; Liu, H.; Tang, D., A synergistic improvement in heat storage rate and capacity of nano-enhanced phase change materials. International Journal of Heat and Mass Transfer 2022, 192, 122869.
(36)Li, H.; Hu, C.; Wang, H.; He, Y.; Hu, X.; Tang, D., Thermal effect of nanoparticles on the metal foam composite phase change material: A pore-scale study. International Journal of Thermal Sciences 2022, 179, 107709.
(37)Sun, M.; Yan, G.; Ning, M.; Hu, C.; Zhao, J.; Duan, F.; Tang, D.; Song, Y., Forced convection heat transfer: A comparison between open-cell metal foams and additive manufactured kelvin cells. International Communications in Heat and Mass Transfer 2022, 138, 106407.
(38)Sun, M.; Zhang, L.; Hu, C.; Zhao, J.; Tang, D.; Song, Y., Forced convective heat transfer in optimized kelvin cells to enhance overall performance. Energy 2022, 242, 122995.
(39)Li, H.; Hu, C.; Jiang, Y.; He, Y.; Tang, D., Improved body-centered cubic unit for accurately predicting the melting characteristics of metal foam composite phase change material. International Journal of Heat and Mass Transfer 2023, 201, 123635.
(40)Sun, M.; Yan, G.; Hu, C.; Zhao, J.; Duan, F.; Song, Y., Thermal and hydraulic behaviours of Kelvin cells from metallic three-dimensional printing. Applied Thermal Engineering 2023, 219.
2010.9 -- 2016.10
大连理工大学
 工程热物理
 博士
2006.9 -- 2010.7
哈工大(威海)
 热能与动力工程
 学士
2017.5 -- 至今
大连理工大学 讲师
新型高强度换热器件传热机理、器件开发及在电子散热方面的应用
功能流体流动传热的多尺度耦合研究;
内燃机关键部件润滑摩擦传热耦合问题研究;