• 更多栏目

    胡成志

    • 副教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:能源与动力学院
    • 学科:能源与环境工程
    • 电子邮箱:huchengzhi@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介

    胡成志副教授任职于大连理工大学能源与动力学院。于2010年获得哈尔滨工业大学学士学位,2016年获得大连理工大学博士学位,并荣获辽宁省优秀博士毕业生荣誉称号。

    团队主要围绕大功率电子器件热控制、动力电池组热管理、航空航天热防护、先进抗磨减阻技术等领域开展基础研究和应用技术开发。开发了回路热管、大功率平板热管、热虹吸管、热压转换强化传热器件、大功率蓄热装置等多种先进热管理系统,并拥有发明专利3项,软件著作权1项,实用新型专利2项,正在申请发明专利4项。近5年在电子器件热管理领域主持了国家自然科学基金项目和JG院所委托项目,作为骨干成员参与了国家重点研发计划项目、JW项目、国家自然科学基金重点项目等,发表国际SCI期刊40余篇。课题组经费充足,培养的研究生进入国内顶尖相关行业研究所工作,欢迎广大同学保送/报考研究生。


    研究方向:

    电子器件热管理;

    航空航天热管理;

    蓄热技术研究;

    热管传热技术研究。


    主持项目:

    国家自然科学基金面上项目;

    国家自然科学基金青年项目;

    辽宁省自然科学基金面上项目;

    JG院所委托项目;


    参与项目:

    国家重点研发计划;

    国际合作重点项目;

    JCJQ重大项目;


    任职经历:

    2021.1-今  副教授  硕导  博导

    2017.5-2020.12  讲师  硕导


     近5年部分发表论文:

    1Hu, C.; Pei, Z.; Shi, L.; Tang, D.; Bai, M., Phase transition properties of thin liquid films with various thickness on different wettability surfaces. International Communications in Heat and Mass Transfer 2022, 135, 106125.

    2Hu, C.; Shi, L.; Yi, C.; Bai, M.; Li, Y.; Tang, D., Mechanism of enhanced phase-change process on structured surface: Evolution of solid-liquid-gas interface. International Journal of Heat and Mass Transfer 2023, 205, 123915.

    (3)Hu, C.; Tang, D.; Lv, J.; Bai, M.; Zhang, X., Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads. Physical Chemistry Chemical Physics 2019, 21 (32), 17786-17791.

    (4)Hu, C.; Li, H.; Tang, D.; Zhu, J.; Wang, K.; Hu, X.; Bai, M., Pore-scale investigation on the heat-storage characteristics of phase change material in graded copper foam. Applied Thermal Engineering 2020, 178, 115609.

    5Hu, C.; Sun, M.; Xie, Z.; Yang, L.; Song, Y.; Tang, D.; Zhao, J., Numerical simulation on the forced convection heat transfer of porous medium for turbine engine heat exchanger applications. Applied Thermal Engineering 2020, 180, 115845.

    (6)Hu, C.; Li, H.; Wang, Y.; Hu, X.; Tang, D., Experimental and numerical investigations of lithium-ion battery thermal management using flat heat pipe and phase change material. J. Energy Storage 2022, 55, 105743.

    (7)Hu, C.; Lv, J.; Bai, M.; Zhang, X.; Tang, D., Molecular dynamics simulation of effects of nanoparticles on frictional heating and tribological properties at various temperatures. Friction 2020, 8 (3), 531-541.

    (8)Wang, K.; Hu, C.; Cai, Y.; Li, Y.; Tang, D., Investigation of heat transfer and flow characteristics in two-phase loop thermosyphon by visualization experiments and CFD simulations. International Journal of Heat and Mass Transfer 2023, 203, 123812.

    9Wang, K.; Hu, C.; Jiang, B.; Hu, X.; Tang, D., Numerical simulation on the heat transfer characteristics of two-phase loop thermosyphon with high filling ratios. International Journal of Heat and Mass Transfer 2022, 184, 122311.

    10He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Experimental investigation on air-cooling type loop thermosyphon thermal characteristic with serpentine tube heat exchanger. International Journal of Refrigeration 2022, 138, 52-60.

    11He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Visualized-experimental investigation on a mini-diameter loop thermosyphon with a wide range of filling ratios. International Communications in Heat and Mass Transfer 2022, 133, 105973.

    12He, Y.; Hu, C.; Li, H.; Jiang, B.; Hu, X.; Wang, K.; Tang, D., A flexible image processing technique for measuring bubble parameters based on a neural network. Chemical Engineering Journal 2022, 429, 132138.

    13He, Y.; Hu, C.; Li, H.; Hu, X.; Tang, D., Reliable predictions of bubble departure frequency in subcooled flow boiling: A machine learning-based approach. International Journal of Heat and Mass Transfer 2022, 195, 123217.

    14He, Y.; Sun, Z.; Hu, C.; Wang, Z.; Li, H.; Yin, Z.; Tang, D., Data-driven engineering descriptor and refined scale relations for predicting bubble departure diameter. International Journal of Heat and Mass Transfer 2022, 195, 123078.

    15He, Y.; Hu, C.; Hu, X.; Xu, H.; Tang, D., Assessment of the two-phase thermosyphon loop with high filling ratio under anti-gravity. International Journal of Heat and Mass Transfer 2023, 206, 123968.

    16He, Y.; Hu, C.; Jiang, B.; Sun, Z.; Ma, J.; Li, H.; Tang, D., Data-driven approach to predict the flow boiling heat transfer coefficient of liquid hydrogen aviation fuel. Fuel 2022, 324, 124778.

    (17)Shi, L.; Hu, C.; Yi, C.; Lyu, J.; Bai, M.; Tang, D., A study of interface evolution-triggering different nucleate boiling heat transfer phenomenon on the structured surfaces. International Journal of Heat and Mass Transfer 2022, 190, 122754.

    (18)Shi, L.; Hu, C. Z.; Yi, C. L.; Bai, M. L.; Lyu, J. Z.; Gao, L. S., A study of how solid-liquid interactions affect flow resistance and heat transfer at different temperatures based on molecular dynamics simulations. Physical Chemistry Chemical Physics 2022, 25 (1), 813-821.

    (19)Yin, X.; Hu, C.; Bai, M.; Lv, J., Effects of depositional nanoparticle wettability on explosive boiling heat transfer: A molecular dynamics study. International Communications in Heat and Mass Transfer 2019, 109, 104390.

    20Yin, X.; Hu, C.; Bai, M.; Lv, J., Molecular dynamic simulation of rapid boiling of nanofluids on different wetting surfaces with depositional nanoparticles. International Journal of Multiphase Flow 2019, 115, 9-18.

    21Yin, X.; Bai, M.; Hu, C.; Lv, J., Molecular dynamics simulation on the effect of nanoparticle deposition and nondeposition on the nanofluid explosive boiling heat transfer. Numerical Heat Transfer, Part A: Applications 2018, 73 (8), 553-564.

    22Hu, C.; Tang, D.; Lv, J.; Bai, M.; Zhang, X., Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads. Physical Chemistry Chemical Physics 2019, 21 (32), 17786-17791.

    23Yin, X.; Hu, C.; Bai, M.; Lv, J., An investigation on the heat transfer characteristics of nanofluids in flow boiling by molecular dynamics simulations. International Journal of Heat and Mass Transfer 2020, 162, 120338.

    24Lyu, J.; Gao, L.; Zhang, Y.; Bai, M.; Li, Y.; Gao, D.; Hu, C., Dynamic spreading characteristics of droplet on the hydrophobic surface with microstructures. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2021, 610.

    25Yi, C.; Hu, C.; Shi, L.; Bai, M.; Lv, J., Wettability of complex Long-Chain alkanes droplets on Pillar-type surfaces. Applied Surface Science, 2021; Vol. 566, p 150752.

    (26)Sun, M.; Hu, C.; Zha, L.; Xie, Z.; Yang, L.; Tang, D.; Song, Y.; Zhao, J., Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam. Chemical Engineering Journal 2020, 389, 124427.

    27Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Hu, X., Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities. Energy 2021, 237, 121540.

    28Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Hu, X., Influence of model inclination on the melting behavior of graded metal foam composite phase change material: A pore-scale study. J. Energy Storage 2021, 44, 103537.

    (29)Li, H.; Hu, C.; He, Y.; Tang, D.; Wang, K.; Huang, W., Effect of perforated fins on the heat-transfer performance of vertical shell-and-tube latent heat energy storage unit. J. Energy Storage 2021, 39, 102647.

    (30)Li, H. Y.; Hu, C. Z.; He, Y. C.; Tang, D. W.; Wang, K. M., Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins. J. Energy Storage 2021, 34, 11

    (31)Sun, M.; Li, M.; Hu, C.; Yang, L.; Song, Y.; Tang, D.; Zhao, J., Comparison of forced convective heat transfer between pillar and real foam structure under high Reynolds number. Applied Thermal Engineering 2021, 182, 116130.

    (32)Sun, M.; Yang, L.; Hu, C.; Zhao, J.; Tang, D.; Song, Y., Simulation of forced convective heat transfer in Kelvin cells with optimized skeletons. International Journal of Heat and Mass Transfer 2021, 165, 120637.

    (33)Li, H.; Hu, C.; He, Y.; Sun, Z.; Yin, Z.; Tang, D., Emerging surface strategies for porous materials-based phase change composites. Matter 2022, 5 (10), 3225-3259.

    (34)Li, H.; Hu, C.; He, Y.; Wang, K.; Tang, D., Pore-scale study on Rayleigh-Bénard convection formed in the melting process of metal foam composite phase change material. International Journal of Thermal Sciences 2022, 177, 107572.=

    (35)Li, H.; Hu, C.; He, Y.; Zhu, J.; Liu, H.; Tang, D., A synergistic improvement in heat storage rate and capacity of nano-enhanced phase change materials. International Journal of Heat and Mass Transfer 2022, 192, 122869.

    (36)Li, H.; Hu, C.; Wang, H.; He, Y.; Hu, X.; Tang, D., Thermal effect of nanoparticles on the metal foam composite phase change material: A pore-scale study. International Journal of Thermal Sciences 2022, 179, 107709.

    (37)Sun, M.; Yan, G.; Ning, M.; Hu, C.; Zhao, J.; Duan, F.; Tang, D.; Song, Y., Forced convection heat transfer: A comparison between open-cell metal foams and additive manufactured kelvin cells. International Communications in Heat and Mass Transfer 2022, 138, 106407.

    (38)Sun, M.; Zhang, L.; Hu, C.; Zhao, J.; Tang, D.; Song, Y., Forced convective heat transfer in optimized kelvin cells to enhance overall performance. Energy 2022, 242, 122995.

    (39)Li, H.; Hu, C.; Jiang, Y.; He, Y.; Tang, D., Improved body-centered cubic unit for accurately predicting the melting characteristics of metal foam composite phase change material. International Journal of Heat and Mass Transfer 2023, 201, 123635.

    (40)Sun, M.; Yan, G.; Hu, C.; Zhao, J.; Duan, F.; Song, Y., Thermal and hydraulic behaviours of Kelvin cells from metallic three-dimensional printing. Applied Thermal Engineering 2023, 219.










    教育经历

    2010.9 -- 2016.10
    大连理工大学       工程热物理       博士

    2006.9 -- 2010.7
    哈工大(威海)       热能与动力工程       学士

    工作经历

    2017.5 -- 至今

    大连理工大学      讲师

    研究方向

  • 新型高强度换热器件传热机理、器件开发及在电子散热方面的应用

  • 功能流体流动传热的多尺度耦合研究;

  • 内燃机关键部件润滑摩擦传热耦合问题研究;