刘悦

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连工学院

学位:硕士

所在单位:物理学院

学科:等离子体物理

联系方式:liuyue@dlut.edu.cn

电子邮箱:liuyue@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effects of parallel sound wave damping and drift kinetic damping on the resistive wall mode stability with various plasma rotation profiles

点击次数:

论文类型:期刊论文

发表时间:2015-10-01

发表刊物:JOURNAL OF PLASMA PHYSICS

收录刊物:SCIE、EI、Scopus

卷号:81

期号:5

ISSN号:0022-3778

摘要:The effect of a parallel viscous force induced damping and the magnetic precessional drift resonance induced damping on the stability of the resistive wall mode (RWM) is numerically investigated for one of the advanced steady-state scenarios in international thermonuclear experimental reactor (ITER). The key element of the investigation is to study how different plasma rotation profiles affect the stability prediction. The single-fluid, toroidal magnetohydrodynamic (MHD) code MARS-F (Liu et al., Phys. Plasmas, vol. 7, 2000, p. 3681) and the MHD-kinetic hybrid code MARS-K (Liu et al., Phys. Plasmas, vol. 15, 2008, 112503) are used for this purpose. Three extreme rotation profiles are considered: (a) a uniform profile with no shear, (b) a profile with negative flow shear at the q = 2 rational surface (q is the equilibrium safety factor), and (c) a profile with positive shear at q = 2. The parallel viscous force is found to be effective for the mode stabilization at high plasma flow speed (about a few percent of the Alfven speed) for the no shear flow profile and the negative shear flow profile, but the stable domain does not appear with the positive shear flow profile. The predicted eigenmode structure is different with different rotation profiles. With a self-consistent inclusion of the magnetic precession drift resonance of thermal particles in MARS-K computations, a lower critical flow speed, i.e. the minimum speed needed for full suppression of the mode, is obtained. Likewise the eigenmode structure is also modified by different rotation profiles in the kinetic results.