卢鹏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

办公地点:海岸和近海工程国家重点实验室A410办公室

联系方式:0411-84708520

电子邮箱:lupeng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance

点击次数:

论文类型:期刊论文

发表时间:2016-04-01

发表刊物:COLD REGIONS SCIENCE AND TECHNOLOGY

收录刊物:SCIE、EI

卷号:124

页面范围:1-10

ISSN号:0165-232X

关键字:Albedo; Melt pond; Transmittance; Radiative transfer; Arctic sea ice

摘要:Solar radiation drives the melting of Arctic sea ice in summer, but its parameterization in thermodynamic modeling is difficult due to the large variability of the optical properties of sea ice in space and time. Here, a two-stream radiative transfer model was developed for the propagation of solar radiation in ponded sea ice to investigate the dependence of apparent optical properties (AOPs), particularly albedo and transmittance, on sky conditions, pond depth, ice thickness, and the inherent optical properties (IOPs) of ice and water. The results of numerical experiments revealed that decrease in melt-pond albedo during melting results not only from increase in pond depth but also from decrease in underlying ice thickness, and the latter is more important for thin ice with thickness less than 1.5 m. Hence, a parameterized pond albedo as a function of both pond depth and ice thickness is more suitable for thinning Arctic sea ice than the previously used exponential function of pond depth, which is valid for thicker ice. The increase in broadband transmittance during melting can be explained by the decrease in underlying ice thickness, because its dependence on ice thickness is nearly three times stronger than on pond depth. The spectral dependence of the pond albedo on depth is significant only in the 600-900-nm band, while it depends clearly on ice thickness in the 350-600-nm band. The uncertainty resulting from the absorption coefficient of ice is limited, while the effect of scattering in ice is more important, as determined by a sensitivity study on the influence of the IOPs on the AOPs of sea ice. The two-stream model provides a time-efficient parameterization of the AOPs for ponded sea ice, accounting for both absorption and scattering, and has potential for implementation into sea-ice thermodynamic models to explain the role of melt ponds in the summer decay of Arctic sea ice. (C) 2016 Elsevier B.V. All rights reserved.