马天辉

个人信息Personal Information

副研究员

博士生导师

硕士生导师

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

学科:岩土工程

办公地点:土木4#楼330

联系方式:QQ: 19928600 wechat: tianhuima

电子邮箱:tianhuima@dlut.edu.cn

扫描关注

出版著作和论文

当前位置: 君子自强不息 >> 科学研究 >> 出版著作和论文

Numerical Simulation on Fracture Formation on Surfaces of Bi-layered Columnar Materials

点击次数:

论文类型:会议论文

发表时间:2012-03-09

收录刊物:EI、CPCI-S、Scopus

卷号:446-449

页面范围:2929-2933

关键字:Numerical simulation; RFPA; fracture pattern; fracture saturation

摘要:Parallel fracture formation on surfaces of bi-layered columnar materials like growing tree trunk has been previously studied numerically. In this paper, numerical results of a continuous transition from parallel to polygonal fracture patterns with principal stress ratio provides the clear convincing theoretical explanation for fracture spacing. We perform three-dimensional simulations of fracture growth in a bi-layered columnar model with an embedded heterogeneous layer under inner radial expansion and terminal tension by finite element approach. As a result of this expansion, the bark stretches until it reaches its limit of deformation and cracks. A novel numerical code, 3D Realistic Failure Process Analysis code (abbreviated as RFPA3D) is used to obtain numerical solutions. In this numerical code, the heterogeneity of materials is taken into account by assigning different properties to the individual elements according to statistical distribution function. Elastic-brittle constitutive relation with residual strength for elements and a Mohr-Coulomb criterion with a tensile cut-off are adopted so that the elements may fail either in shear or in tension. The discontinuity feature of the initiated crack is automatically induced by using degraded stiffness. approach when the tensile strain of the failed elements reaching a certain value. Numerical results of a continuous transition from parallel to polygonal fracture patterns with principal stress ratio are obtained by varying simulation parameters, the thickness of the material layer. We find that, except for further opening of existing fractures after they are well-developed (saturation), new fractures may also initiate and propagate along the interface between layers, which may serve as another mechanism to accommodate additional strain for fracture saturated layers.