孟相宇

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:安全科学与工程. 化工过程机械

电子邮箱:mengxiangyu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Analysis and optimization of a variable mode valve actuation system

点击次数:

论文类型:期刊论文

发表时间:2021-04-07

发表刊物:INTERNATIONAL JOURNAL OF ENGINE RESEARCH

卷号:22

期号:5

页面范围:1500-1511

ISSN号:1468-0874

关键字:Variable mode valve actuation; two-stroke compression release brake; braking safety; heavy-duty engines; cylinder deactivation

摘要:Braking safety of heavy-duty engines has always been the focus of the research, and the fuel economy and after-treatment thermal management during low-load operation of heavy-duty engines have also received much attention in recent years. A variable mode valve actuation system which can realize switching between four-stroke driving, two-stroke compression release braking and cylinder deactivation modes on a traditional four-stroke engine was proposed in this article. Two-stroke compression release braking mode of the variable mode valve actuation system can greatly enhance the braking safety, while the overload of valve train was a great challenge, especially during the release event. The effects of different release opening timing on cylinder pressure and the braking performance were studied. The results indicated that a higher cylinder pressure does not always lead to higher braking power. When the release opening timing was advanced by 6 degrees CA, the braking power reduced by only 9 kW (2.65%) at 1900 r/min compared with the initial value, while the maximum cylinder pressure reduced by 11.4 bar (20.8%). Besides, the variable mode valve actuation system can realize alternate three-cylinder cylinder deactivation mode on a six-cylinder turbocharged engine, which can improve the brake-specific fuel consumption by 14.67% and increase the turbine outlet temperature by 63.6 degrees C and reduce the exhaust flow rate by 50.66% at lightly load idle. Meanwhile, when the engine load is less than 50% at the rated speed, the three-cylinder cylinder deactivation mode can improve the brake-specific fuel consumption, increase the turbine outlet temperature and reduce the exhaust flow rate. The increase of the turbine outlet temperature and the decrease of the exhaust flow rate are very beneficial to improve the efficiency of the after-treatment thermal management of heavy-duty engines.