个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:化学工艺. 功能材料化学与化工. 无机化学
办公地点:西部校区化工综合楼A403
联系方式:0411-84986065
电子邮箱:ninggl@dlut.edu.cn
Superior antibacterial activity of Fe3O4@copper(II) metal-organic framework core-shell magnetic microspheres
点击次数:
论文类型:期刊论文
发表时间:2021-02-07
发表刊物:DALTON TRANSACTIONS
卷号:49
期号:37
页面范围:13044-13051
ISSN号:1477-9226
摘要:With the rapid evolution of antibiotic resistant bacteria, it has become more and more difficult to treat bacterial infection with traditional antibiotics. Therefore, new strategies with high antibacterial efficiency are urgently needed to combat bacteria effectively. Herein, Fe3O4@copper(II) metal-organic framework Cu-3(BTC)(2) (Cu-BTC) core shell structured magnetic microspheres were prepared via a layer by layer growth process. The as-prepared Fe3O4@Cu-BTC possessed a unique broad-spectrum antibacterial potency against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The slowly released copper ions and enhanced reactive oxygen species (ROS) generation by facilitating the effective separation and transfer of photoexcited electron-hole pairs played a role in the antibacterial activity of Fe3O4@Cu-BTC. Copper ions released from Fe3O4@Cu-BTC adhered to the negatively charged bacterial cell, interacted with the bacterial membrane, destroyed the integrity of the membrane which resulted in leakage of bacterial content and then generated ROS to damage DNA, thus leading to cell death. Accordingly, this study provides a competitive strategy for preparing recyclable antibacterial materials that are endowed with targeted antibacterial therapy.