Peng Hao
Personal Homepage
Paper Publications
Experimental validation of cylindrical shells under axial compression for improved knockdown factors
Hits:

Indexed by:Journal Papers

Date of Publication:2019-06-01

Journal:INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES

Included Journals:SCIE

Volume:164

Page Number:37-51

ISSN No.:0020-7683

Key Words:Cylindrical shells; Dimple-shape imperfection; Measured imperfection; Knockdown factor (KDF); Buckling tests

Abstract:For cylindrical shells under axial compression, the essence of initial geometric imperfections is the superposition of local out-of-plane deformations of various forms, which may facilitate the development of buckling deformations, thus leading to a significant knockdown of the load-carrying capacity. It is very challenging for existing methods to provide an accurate prediction of the lower bound on a load-carrying capacity before the structure is fabricated. Therefore, it is crucial to find a type of assumed imperfection that will allow us to approximate lower bounds for shells in the design stage. Five 1-m-diameter unstiffened shells, termed W1-W5, are designed, analysed and tested. The measured imperfection approach, single-perturbation load approach (SPLA), worst multiple-perturbation load approach (WMPLA), and a Combined Approach for measured imperfections and superimposed radial point load imperfections are compared with test results. The results show that the SPLA-based methods produce higher KDFs than the test results and are sensitive to the distribution of the measured imperfections. In contrast, the KDFs predicted by the WMPLA and the Combined Approach are similar to one another and very close to the test results. From the comparison results, it can preliminarily be concluded that the WMPLA is able to envelop the small- and large-amplitude measured imperfections, which has the potential to predict a rational lower bound on the buckling loads of unstiffened cylindrical shells. The WMPLA should be extended to the design of other types of thin-walled structures with caution, because the manufacturing signature may be distinctly changed for different processes, and the buckling tests of other types of structures would be carried out in future study. (C) 2019 Elsevier Ltd. All rights reserved.

Personal information

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

Main positions:Professor

Other Post:工程力学系主任

Gender:Male

Alma Mater:Dalian University of Technology

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment

Discipline:Solid Mechanics. Aerospace Mechanics and Engineering. Computational Mechanics. Engineering Mechanics

Contact Information:haopeng@dlut.edu.cn

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version