Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
孙长凯

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:第四军医大学
Degree:Doctoral Degree
School/Department:人工智能学院
Discipline:Biomedical Engineering
Business Address:大连理工大学创新园大厦B1202
Contact Information:sunck2@dlut.edu.cn
E-Mail:sunck2@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

Hits : Praise

Indexed by:期刊论文

Date of Publication:2017-04-07

Journal:PLOS ONE

Included Journals:SCIE、PubMed

Volume:12

Issue:4

Page Number:e0174964

ISSN No.:1932-6203

Abstract:Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor"). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.