location: Current position: Home >> Scientific Research >> Paper Publications

Elastic buckling of thin-walled polyhedral pipe liners encased in a circular pipe under uniform external pressure

Hits:

Indexed by:期刊论文

Date of Publication:2018-02-01

Journal:THIN-WALLED STRUCTURES

Included Journals:SCIE、EI

Volume:123

Page Number:214-221

ISSN No.:0263-8231

Key Words:Pipes; Polyhedral shapes; Thin-walled liners; Buckling; Rehabilitation

Abstract:In this study, a thin-walled polyhedral polymer pipe liner is proposed for the internal rehabilitation of a deteriorated/cracked underground circular metal pipe. The pipe liner is externally confined and subjected to the hydrostatic pressure of water seeped through the cracked pipe. The critical buckling pressure of the pipe liner is derived analytically based on the principle of minimum potential energy and compared with that of a cylindrical pipe liner. A finite element model of the pipe liner is established and analyzed to understand pressure-deformation equilibrium paths and the stability of post-buckling behavior. The analytical buckling pressure is in excellent agreement with the numerical results. The buckling pressure of a polyhedral liner increases with the increase of thickness-to-radius ratio and the decrease of the number of sides in polygon base shape. In comparison with the cylindrical liner, the polyhedral liner can increase buckling pressure up to 10 times but result in a less stable post-buckling behavior.

Pre One:Bridge scour monitoring using smart rocks based on magnetic field interference