唐洪

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:生物医学工程学院

学科:生物医学工程. 信号与信息处理

办公地点:大连理工大学电信学部

联系方式:tanghong@dlut.edu.cn

电子邮箱:tanghong@dlut.edu.cn

扫描关注

论文成果

当前位置: 唐洪 >> 科学研究 >> 论文成果

Discrimination of Aortic and Pulmonary Components from the Second Heart Sound Using Respiratory Modulation and Measurement of Respiratory Split

点击次数:

论文类型:期刊论文

发表时间:2017-07-01

发表刊物:APPLIED SCIENCES-BASEL

收录刊物:SCIE、Scopus

卷号:7

期号:7

ISSN号:2076-3417

关键字:second heart sound; respiratory split; aortic component; pulmonary component; respiratory modulation

摘要:The second heart sound consists of aortic and pulmonary components. Analysis on the changes of the second heart sound waveform in respiration shows that the aortic component has little variation and the delay of the pulmonary component is modulated by respiration. This paper proposes a novel model to discriminate the aortic and pulmonary components using respiratory modulation. It is found that the aortic component could be simply extracted by averaging the second heart sounds over respiratory phase, and the pulmonary component could be extracted by subtraction. Hence, the split is measured by the timing difference of the two components. To validate the measurement, the method is applied to simulated second heart sounds with known varying splits. The simulation results show that the aortic and pulmonary components can be successfully extracted and the measured splits are close to the predefined splits. The method is further evaluated by data collected from 12 healthy subjects. Experimental results show that the respiratory split can be accurately measured. The minimum split generally occurs at the end of expiration and the split value is about 20 ms. Meanwhile, the maximum split is about 50 ms at the end of inspiration. Both the trend of split varying with respect to respiratory phase and the numerical range of split varying are comparable to the results disclosed by previous physiologists. The proposed method is compared to the two previous well known methods. The most attractive advantage of the proposed method is much less complexity. This method has potential applications in monitoring heart hemodynamic response to respiration.