唐山

基本信息Personal Information

教授

博士生导师

硕士生导师

主要任职:无

性别:男

毕业院校:新加坡国立大学

学位:博士

在职信息:在职

所在单位:工程力学系

学科:固体力学 计算力学 材料学

办公地点:力学楼303-1

联系方式:18723558261

电子邮箱:

扫描关注

个人简介Personal Profile

   博士、教授、博士生导师,曾获”王仁先生青年科技奖”,一直致力于固体力学的前沿科学问题展开研究,尤其是复杂材料在不同尺度下的建模和计算及微观结构与宏观力学性能之间的关联,擅长本构建模,提出计算算法和编程去解决工程应用中的实际问题。已发表SCI论文70余篇, 其中包括计算力学顶级期刊Computer Methods in Applied Mechanics and Engineering ,Computational Mechanics,固体力学顶级期刊Journal of Mechanics and Physics of Solids;International Journal of Plasticity,International Journal of solids and Structures;结构材料顶级期刊Acta Materials;高分子材料顶级期刊Macromolecules, Soft Matter;Polymers;综合类期刊Advance Materials,Advance Energy Materials,Nano letter,Nanoscale 等。近5年一作或通讯论文33篇,SCI引用782次(谷歌学术982次)。    
   本组现有博士生7名,硕士生9名,本组学术氛围浓厚,研究经费充足,欢迎具有力学、物理和材料背景的优秀研究生(硕士和博士)加入本组,也欢迎数学物理基础扎实的本科生来组内实习。
   
联系方式:
   邮箱:shantang@dlut.edu.cn
   电话:18723558261

学术专长:
   大数据驱动力学,计算力学,断裂力学、材料本构和多尺度力学。具有扎实的数学功底和很强的计算机编程能力,擅长使用合适的计算力学工具来解决工程应用领域的难题。多年来致力于应用力学(连续介质力学、统计力学、热力学等)去解决工程应用中的断裂、破坏、结构和材料性能等问题。

代表性研究项目:


1、国家自然科学基金委员会面上项目:仿弹性蛋白高分子材料的粘弹性力学性能研究;

2、国家自然科学基金委员会面上项目:基于透射/扫描电镜原位实验的高熵合金跨尺度断裂破坏研究

3、重庆市基础与前沿研究计划项目:铝合金板冲击蝶状破坏的微观表征和多尺度模拟;
4、重庆大学机械传动国家重点室开放基金。

学术论文(近三年):

[1] Tang, Shan; Zhang, Gang; Yang, Hang; Li, Ying; Liu, Wing Kam; Guo, Xu. (2019). MAP123: A data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Computer Methods in Applied Mechanics and Engineering. 10.1016/j.cma.2019.112587.

[2] Zhang, Gang; Guo, Tian Fu; Guo, Xu; Tang, Shan; Fleming, Mark; Liu, Wing Kam. (2019). Fracture in tension-compression-asymmetry solids via phase field modeling. Computer Methods in Applied Mechanics and Engineering. 10.1016/j.cma.2019.112573.

[3] Zou, Jie;Wu, Shuangquan;Chen, Jie;Lei, Xiaojuan;Li, Qihua;Yu, Hui;Tang, Shan;Ye, Dongdong. (2019). Highly Efficient and Environmentally Friendly Fabrication of Robust, Programmable, and Biocompatible Anisotropic, All-Cellulose, Wrinkle-Patterned Hydrogels for Cell Alignment. Advanced Materials. 10.1002/adma.201904762.

[4] Shen, Zhiqiang; Ye, Huilin; Kroger, Martin; Tang, Shan; Li, Ying. (2019). Interplay between ligand mobility and nanoparticle geometry during cellular uptake of PEGylated liposomes and bicelles. NANOSCALE. 

[5] Deng, Lijun;Zhou, Nian;Tang, Shan; Li, Ying. (2019). Improved Dreiding force field for single layer black phosphorus. PHYSICAL CHEMISTRY CHEMICAL PHYSICS.

[6] Li, Hengyang;Kafka, Orion L.; Gao, Jiaying; Yu, Cheng;Nie, Yinghao; Zhang, Lei;Tajdari, Mahsa;Tang, Shan;Guo, Xu;Li, Gang; Tang, Shaoqiang; Cheng, Gengdong;Liu, Wing Kam. (2019). Clustering discretization methods for generation of material performance databases in machine learning and design optimization. Computional Mechanics.

[7] Li, Jianbo; Gao, Bo;Wang, Yitao;Chen, Xianhua;Xin, Yunchang;Tang, Shan; Liu, Bin; Liu, Yong;Song, Min. (2019). Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds.

[8] Zhou, Nian;Zhang, Gang;Guo, Tian Fu;Guo, Xu;Tang, Shan;Huang, Xiaoxu. (2019). twin nucleation at prismatic/basal boundary in hexagonal close-packed metals. Philosophical Magazine, 99:2584-2603.

[9] Xue, Riye; Liu, Chang; Zhang, Weisheng; Zhu, Yichao; TangShan; Du, Zongliang; Guo, Xu. (2019). Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Computer Methods in Applied Mechanics and Engineering.

[10] Yang, H., Guo, X., Tang, S., & Liu, W. K. (2019). Derivation of heterogeneous material laws via data-driven principal component expansions. Computational Mechanics, 1-15.

[11] Zhang, G., Guo, T., Zhou, Z., Tang, S., & Guo, X. (2019). A phase-field model for fracture in water-containing soft solids. Engineering Fracture Mechanics.

[12] Tang, W., Tang, S., Guan, X., Zhang, X., Xiang, Q., & Luo, J. (2019). High‐Performance Solid Polymer Electrolytes Filled with Vertically Aligned 2D Materials. Advanced Functional Materials, 1900648.

[13] C. Huang, K.I. Elkhodary, S. Tang, (2019). Resolving the Diffusionless Transformation Process of Twinning in Single Crystal Plasticity Theory, International Journal of Plasticity.

[14] Shan Tang, Gang Zhang, Tianfu Guo, Xu Guo, Wing Kam Liu, (2019). Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition. Computer Methods in Applied Mechanics and Engineering.

[15] Zhang, G., Guo, T., Zhou, Z., Tang, S., & Guo, X. (2019). A phase-field model for fracture in water-containing soft solids. Engineering Fracture Mechanics.

[16] Gao B, Zhang G, Guo T, Jiang C, Guo X, Tang S. Voiding and fracture in high-entropy alloy under multi-axis stress states. (2018). Materials Letters. Nov 19.

[17] Xu, J., Yuan, G., Zhu, Q., Wang, J., Tang, S., & Gao, L. (2018). Enhancing the Strength of Graphene by a Denser Grain Boundary. ACS nano.

[18] Li, J., Liu, B., Wang, Y., Tang, S., Liu, Y., & Lu, X. (2018). A Study on the Zener-Holloman Parameter and Fracture Toughness of an Nb-Particles-Toughened TiAl-Nb Alloy. Metals, 8(4), 287.

[19] Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y. W., & Luo, J. (2018). Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. Advanced Energy Materials, 8(24), 1800866.

[20] Zhou, Z., Li, Y., Guo, T., Guo, X., & Tang, S. (2018). Surface Instability of Bilayer Hydrogel Subjected to Both Compression and Solvent Absorption. Polymers, 10(6), 624.

[21] Gao, B., Xiang, Q., Guo, T., Guo, X., Tang, S., & Huang, X. X. (2018). In situ TEM investigation on void coalescence in metallic materials. Materials Science and Engineering: A, 734, 260-268.

[22] Gao, B., Li, Y., Guo, T. F., Guo, X., & Tang, S. (2018). Void nucleation in alloys with lamella particles under biaxial loadings. Extreme Mechanics Letters, 22, 42-50.

[23] Li, J., Gao, B., Tang, S., Liu, B., Liu, Y., Wang, Y., & Wang, J. (2018). High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy. Journal of Alloys and Compounds, 747, 571-579.

[24] Qiu, Hai , Li, Ying , Guo, Tianfu , Guo, Xu , Tang, Shan. (2018). Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mechanics Letters, 20. 10.1016

[25] Wang, A., Tang, S., Kong, D., Liu, S., Chiou, K., Zhi, L., Huang, J., Xia, Y. Y., Luo, J. (2017). Bending-Tolerant Anodes for Lithium-Metal Batteries. Advanced Materials, 30(1):1703891.

[26] Liu, S., Tang, S., Zhang, X., Wang, A., Yang, Q. H., & Luo, J. (2017). Porous al current collector for dendrite-free na metal anodes. Nano Letters.

[27] S. Tang, G. Zhang, N. Zhou, T.F. Guo, X.X. Huang. (2017). Uniaxial stress-driven grain boundary migration in Hexagonal Close-packed (HCP) metals: Theory and MD simulations. International Journal of Plasticity 95, 82-104.

[28] Zhou, Z., Li, Y., Wong, W., Guo, T., Tang, S., & Luo, J. (2017). Transition of surface-interface creasing in bilayer hydrogels. Soft Matter.

[29] Z.L. Li, Z.H. Zhou, Y. Li, S. Tang. (2017). Effect of Cyclic Loading on Surface Instability of Silicone Rubber under Compression. Polymers 9(4):148.

[30] S. Tang, B.Gao, Z.H. Zhou, Q. Gu, T.F. Guo. (2017). Dimension-controlled formation of crease patterns on soft solids. Softer Matter 13, 619-626.



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 高分子复合材料,金属合金和生物材料(仿生材料)的本构建模
  • 高分子材料(生物材料及仿生材料)的开发制备及跨尺度数值模拟和力学表征
  • 金属材料变形及断裂行为的跨尺度数值模拟及力学表征
  •  先进金属复合材料的开发制备及微观结构表征