唐山

基本信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:新加坡国立大学

学位:博士

在职信息:在职

所在单位:工程力学系

学科:固体力学 计算力学 材料学

办公地点:力学楼303-1

联系方式:18723558261

电子邮箱:

扫描关注

个人简介Personal Profile

   博士、教授、博士生导师,入选中组部第五批”青年千人计划”,曾获”王仁先生青年科技奖”,已发表SCI论文40余篇, 其中包括数篇JMPS,IJP, Acta material,Nano Letters, Soft Matter, Macromolecue等。
   
   本组现有博士生7名,硕士生1名,本组学术氛围浓厚,研究经费充足,欢迎具有力学、物理和材料背景的优秀研究生(硕士和博士)加入本组,也欢迎数学物理基础扎实的本科生来组内实习。
   
联系方式:
   邮箱:shantang@dlut.edu.cn
   电话:18723558261

学术专长:
   计算力学,断裂力学、材料本构和多尺度力学。具有扎实的数学功底和很强的计算机编程能力,擅长使用合适的计算力学工具来解决工程应用领域的难题。多年来致力于应用力学(连续介质力学、统计力学、热力学等)去解决工程应用中的断裂、破坏、结构和材料性能等问题。

代表性研究项目:

1、中组部“青年千人计划”资助项目;
1、国家自然科学基金委员会资助项目:仿弹性蛋白高分子材料的粘弹性力学性能研究;
2、重庆市基础与前沿研究计划项目:铝合金板冲击蝶状破坏的微观表征和多尺度模拟;
4、重庆大学机械传动国家重点室开放基金。

论文及专著:

[1] Xu, J., Yuan, G., Zhu, Q., Wang, J., Tang, S., & Gao, L. (2018). Enhancing the Strength of Graphene by a Denser Grain Boundary. ACS nano.

[2] Li, J., Liu, B., Wang, Y., Tang, S., Liu, Y., & Lu, X. (2018). A Study on the Zener-Holloman Parameter and Fracture Toughness of an Nb-Particles-Toughened TiAl-Nb Alloy. Metals, 8(4), 287.

[3] Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y. W., & Luo, J. (2018). Simultaneously Enhancing the Thermal Stability, Mechanical Modulus, and Electrochemical Performance of Solid Polymer Electrolytes by Incorporating 2D Sheets. Advanced Energy Materials, 8(24), 1800866.

[4] Zhou, Z., Li, Y., Guo, T., Guo, X., & Tang, S. (2018). Surface Instability of Bilayer Hydrogel Subjected to Both Compression and Solvent Absorption. Polymers, 10(6), 624.

[5] Gao, B., Xiang, Q., Guo, T., Guo, X., Tang, S., & Huang, X. X. (2018). In situ TEM investigation on void coalescence in metallic materials. Materials Science and Engineering: A, 734, 260-268.

[6] Gao, B., Li, Y., Guo, T. F., Guo, X., & Tang, S. (2018). Void nucleation in alloys with lamella particles under biaxial loadings. Extreme Mechanics Letters, 22, 42-50.

[7] Li, J., Gao, B., Tang, S., Liu, B., Liu, Y., Wang, Y., & Wang, J. (2018). High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy. Journal of Alloys and Compounds, 747, 571-579.

[8] Qiu, Hai , Li, Ying , Guo, Tianfu , Guo, Xu , Tang, Shan. (2018). Deformation and pattern transformation of porous soft solids under biaxial loading: Experiments and simulations. Extreme Mechanics Letters, 20. 10.1016

[9] Wang, A., Tang, S., Kong, D., Liu, S., Chiou, K., Zhi, L., Huang, J., Xia, Y. Y., Luo, J. (2017). Bending-Tolerant Anodes for Lithium-Metal Batteries. Advanced Materials, 30(1):1703891.

[10] Liu, S., Tang, S., Zhang, X., Wang, A., Yang, Q. H., & Luo, J. (2017). Porous al current collector for dendrite-free na metal anodes. Nano Letters.

[11] S. Tang, G. Zhang, N. Zhou, T.F. Guo, X.X. Huang. (2017). Uniaxial stress-driven grain boundary migration in Hexagonal Close-packed (HCP) metals: Theory and MD simulations. International Journal of Plasticity 95, 82-104.

[12] Zhou, Z., Li, Y., Wong, W., Guo, T., Tang, S., & Luo, J. (2017). Transition of surface-interface creasing in bilayer hydrogels. Soft Matter.

[13] Z.L. Li, Z.H. Zhou, Y. Li, S. Tang. (2017). Effect of Cyclic Loading on Surface Instability of Silicone Rubber under Compression. Polymers 9(4):148.

[14] S. Tang, B.Gao, Z.H. Zhou, Q. Gu, T.F. Guo. (2017). Dimension-controlled formation of crease patterns on soft solids. Softer Matter 13, 619-626.

[15] S. Tang, T.F. Guo, X. Peng. (2016). Void growth in a pressure-sensitive dilatant solid applications to shale rocks and polymers. Chinese Journal of Computational Mechanics 33, 649-656.

[16] S. Tang, Y. Li, Y. Yang, and Z. Guo. (2015). The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter 11, 7911-7919.

[17] S. Tang, Y. Yang,X. Peng, W.K. Liu, X. Huang, and K. Elkhodary (2015). A semi-numerical algorithm for instability of compressible multilayered structures. Computational Mechanics 56, 63-75.

[18] S. Tang, Y. Li, W.K. Liu, N. Hu, X. Peng, and Z. Guo. (2015). Tensile Stress-Driven Surface Wrinkles on Cylindrical Core-Shell Soft Solids. Journal of Applied Mechanics - Transactions of the ASME 82, 121002.

[19] S. Tang, M.S. Greene, W.K. Liu, X. Peng, and Z. Guo. (2015). Variable chain confinement in polymers with nanosized pores and its impact on instability. Journal of Applied Mechanics - Transactions of the ASME 82, 101001.

[20] S. Tang, Y. Li, W.K. Liu, and X. Huang. (2014). Surface ripples of polymeric nanofibers under tension: The crucial role of Poisson’s ratio. Macromolecules 47, 6503-6514.

[21] S. Tang, M.S. Greene, W.K. Liu, X. Peng, and Z. Guo. (2014). Chain confinement drives the mechanical properties of nanoporous polymers. Europhysics Letter 106, 36002.

[22] S. Tang, A.M. Kopacz, S. Chan, G.B. Olson and W.K. Liu. (2013). Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography.Journal of the Mechanics and Physics of Solids 61,2108C2124.

[23] S. Tang, A.M. Kopacz, S.C. O’Keeffe, G.B. Olson and W.K. Liu. (2013). Concurrent multiresolution finite element: formulation and algorithmic aspects Computational Mechanics 52,1265C1279.

[24] S. Tang, M.S. Greene, and W.K. Liu. (2012). Two-scale mechanism-based theory of nonlinear viscoelasticity. Journal of the Mechanics and Physics of Solids 60, 199-226.

[25] S. Tang, M.S. Greene, and W.K. Liu. (2011). A renormalization approach to model interaction in microstructured solids: application to porous elastomer. Computer Methods in Applied Mechanics and Engineering 217,213-225.

[26] S. Tang, M.S. Greene, and W.K. Liu. (2011). A variable constraint tube model for size effects in polymer nanostructures. Applied Physics Letters 99, 191910.

[27] S. Tang, T.F. Guo, L. Cheng. (2008). Rate effects on toughness in elastic nonlinear viscous solids. Journal of the Mechanics and Physics of Solids 56, 974-992.

[28] S. Tang, T.F. Guo, L. Cheng. (2009). Dynamic toughness in elastic nonlinear viscous solids. Journal of the Mechanics and Physics of Solids 57, 384-400.

[29] S. Tang, T.F. Guo, L. Cheng. (2009). C* controlled creep crack growth by grain boundary cavitation. Acta Materialia 56, 5293-5303.

[30] S. Tang, T.F. Guo, L. Cheng. (2008). Mode mixity and nonlinear viscous effects on toughness of interfaces. International Journal of Solids and Structure 45, 2493-2511.

[31] S. Tang, T.F. Guo, L. Cheng. (2011). Modeling hydrogen attack effect on creep fracture toughness. International Journal of Solids and Structure 48, 2909-2919.

[32] S. Tang, T.F. Guo, L. Cheng. (2009). Creep fracture toughness using conventional and cell element approaches. Computational Material Science 44, 138-144.

[33] S. Tang, T.F. Guo, L. Cheng. (2007). Rate Dependent Interface Delamination in Plastic IC Packages. 9th Electronics Packaging Technology Conference, 2007.

[34] S. Tang, T.F. Guo, L. Cheng. (2006). Vapour pressure and void shape effects on void growth and rupture of polymeric solids.

[35] Y. Li, S. Tang, B.C. Abberton, M. Kroger, W.K. Liu ( 2013), A predictive multiscale computational framework for viscoelastic properties of linear polymers, Polymer 53, 5935-5952.

[36] S.C. O’Keeffe, S. Tang, A.M. Kopacz, J. Smith, D.J. Rowenhorst, G. Spanos, W.K. Liu, and G.B. Olson (2015).Multiscale ductile fracture integrating tomographic characterization and 3-D simulation. Acta Materialia 82, 503-510.

[37] T. Fu, X. Peng, Y. Zhao, C. Feng, S. Tang, N. Hu, and Z. Wang (2015). First-principles calculation and molecular dynamics simulation of fracture behavior of VN layers under uniaxial tension. Physica E 69, 224-231.

[38] Z.Y. Guo, Y. Chen, Q. Wan, H.T. Li, X.h. Shi, S. Tang, X.Q. Peng(2016). A Hyperelastic Constitutive Model for Chain-Structured Particle Reinforced Neo-Hookean Composites. Materials Design 95, 580-590.

[39] X. Peng, S. Tang, N. Hu, J. Han (2016). Determination of the Eshelby tensor in mean-field schemes for evaluation of mechanical properties of elastoplastic composites . International Journal of Plasticity 76, 147-165.

[40] Y. Li, S. Tang, M. Kroger, W.K. Liu (2015). Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. Journal of the Mechanics and Physics of Solids 88, 204C226.

[41] D. Peng, Z. H. Zhou, Y. Li, S. Tang (2016). Computational Modeling of the Effect of Sulci during Tumor Growth and Cerebral Edema. Journal of Nanomaterials 18,3038790.

[42] B. Hu N. Hu S. Tang et al.(2014) Tomographic reconstruction of damage images in hollow cylinders using Lamb waves. Ultrasonics 54(7).

[43] L. Wu, G. Huang, N. Hu, S. Fu, J. Qiu, Z. Wang, and S. Tang (2014). Improvement of the piezoelectric properties of PVDF-HFP using AgNWs. RCS Advances 4, 35896-35903.

[44] L.E. Lindgren, H. Qin, W.K.m Liu, S. Tang(2011). Simplified multiscale resolution theory for elastic material with damage. 11th International Conference on Computational Plasticity,2011.

[45] R. Tian, S. Chan, S. Tang, A.M. Kopacz, J.S. Wang, H.J. Jou, L. Siad, L. Lindgen, G.B. Olson, W.K. Liu (2010). A multiresolution continuum simulation of the ductile fracture process, Journal of the Mechanics and Physics of Solids 58, 1681-1700.

[46] K.I. Elkhodary, M.S. Greene, S. Tang, T. Belytschko, W.K. Liu (2013), Archetype-blending continuum theory, Computer Methods in Applied Mechancis and Engineering, on linehttp://dx.doi.org/10.1016/j.bbr.2011.03.031.

[47] K.I. Elkhodary, S. Tang, W.K. Liu(2013). Chapter: Inclusion Clusters in the Archetype-Blending Continuum Theory.

[48] M.S. Greene, H. Xu, S. Tang, W. Chen, W.K. Liu (2013). A generalized uncertainty propagation criterioark studies of microstructured material systems, Computer Methods in Applied Mechanics and Engineering 254, 271-291.

[49] B. L. Boyce, S.L.B. Kramer, S. Tang et al.(2013) The Sandia Fracture Challenge: blind round robin predictions of ductile tearing, International Journal of Fracture 10(1-2):1007.


  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 高分子复合材料,金属合金和生物材料(仿生材料)的本构建模
  • 高分子材料(生物材料及仿生材料)的开发制备及跨尺度数值模拟和力学表征
  • 金属材料变形及断裂行为的跨尺度数值模拟及力学表征
  •  先进金属复合材料的开发制备及微观结构表征
    • 中国力学学会青年工作委员会委员