唐山

基本信息Personal Information

教授 博士生导师 硕士生导师

曾获荣誉 : 中组部第5批青年千人计划
王仁先生青年科技奖

性别 : 男

毕业院校 : 新加坡国立大学

学位 : 博士

在职信息 : 在职

所在单位 : 工程力学系

学科 : 固体力学 计算力学 材料学

办公地点 : 力学楼303-1

联系方式 : 18723558261

Email :

扫描关注

个人简介Personal Profile

博士、教授、博士生导师,入选中组部第五批”青年千人计划”,曾获”王仁先生青年科技奖”,已发表SCI论文40余篇, 其中包括数篇JMPS,IJP, Acta material,Nano Letters, Soft Matter, Macromolecue等。
   
    本组现有博士生7名,硕士生1名,本组学术氛围浓厚,研究经费充足,欢迎具有力学、物理和材料背景的优秀研究生(硕士和博士)加入本组,也欢迎数学物理基础扎实的本科生来组内实习。
   
联系方式:
    邮箱:shantang@dlut.edu.cn
    电话:18723558261

学术专长:
    计算力学,断裂力学、材料本构和多尺度力学。具有扎实的数学功底和很强的计算机编程能力,擅长使用合适的计算力学工具来解决工程应用领域的难题。多年来致力于应用力学(连续介质力学、统计力学、热力学等)去解决工程应用中的断裂、破坏、结构和材料性能等问题。

代表性研究项目:

1、中组部“青年千人计划”资助项目;
1、国家自然科学基金委员会资助项目:仿弹性蛋白高分子材料的粘弹性力学性能研究;
2、重庆市基础与前沿研究计划项目:铝合金板冲击蝶状破坏的微观表征和多尺度模拟;
4、重庆大学机械传动国家重点室开放基金。

论文及专著:
【1】    Liu, S., Tang, S., Zhang, X., Wang, A., Yang, Q. H., & Luo, J. (2017). Porous al current collector for dendrite-free na metal anodes. Nano Letters.
【2】    S. Tang, G. Zhang, N. Zhou, T.F. Guo, X.X. Huang (2017). Uniaxial stress-driven grain boundary migration in Hexagonal Close-packed (HCP) metals: Theory and MD simulations. International Journal of Plasticity 95, 82-104.
【3】    Zhou, Z., Li, Y., Wong, W., Guo, T., Tang, S., & Luo, J. (2017). Transition of surface-interface creasing in bilayer hydrogels. Soft Matter.
【4】    Z.L. Li, Z.H. Zhou, Y. Li, S. Tang (2017). Effect of Cyclic Loading on Surface Instability of Silicone Rubber under Compression. Polymers 9, xxx-xxx.
【5】    S. Tang, B.Gao, Z.H. Zhou, Q. Gu, T.F. Guo (2017). Dimension-controlled formation of crease patterns on soft solids. Softer Matter 13, 619-626.
【6】    S. Tang, T.F. Guo, X. Peng (2016). Void growth in a pressure-sensitive dilatant solid applications to shale rocks and polymers. Chinese Journal of Computational Mechanics 33, 649-656.
【7】    S. Tang, Y. Li, Y. Yang, and Z. Guo (2015). The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter 11, 7911-7919.
【8】    S. Tang, Y. Yang,X. Peng, W.K. Liu, X. Huang, and K. Elkhodary (2015). A semi-numerical algorithm for instability of compressible multilayered structures. Computational Mechanics 56, 63-75.
【9】    S. Tang, Y. Li, W.K. Liu, N. Hu, X. Peng, and Z. Guo (2015). Tensile Stress-Driven Surface Wrinkles on Cylindrical Core-Shell Soft Solids. Journal of Applied Mechanics - Transactions of the ASME 82, 121002.
【10】    S. Tang, M.S. Greene, W.K. Liu, X. Peng, and Z. Guo (2015). Variable chain confinement in polymers with nanosized pores and its impact on instability. Journal of Applied Mechanics - Transactions of the ASME 82, 101001.
【11】    S. Tang, Y. Li, W.K. Liu, and X. Huang (2014). Surface ripples of polymeric nanofibers under tension: The crucial role of Poisson’s ratio. Macromolecules 47, 6503-6514.
【12】    S. Tang, M.S. Greene, W.K. Liu, X. Peng, and Z. Guo, (2014). Chain confinement drives the mechanical properties of nanoporous polymers. Europhysics Letter 106, 36002.
【13】    S. Tang, A.M. Kopacz, S. Chan, G.B. Olson and W.K. Liu (2013). Three-dimensional ductile fracture analysis with a hybrid multiresolution approach and microtomography.Journal of the Mechanics and Physics of Solids 61,2108C2124.
【14】    S. Tang, A.M. Kopacz, S.C. O’Keeffe, G.B. Olson and W.K. Liu (2013). Concurrent multiresolution finite element: formulation and algorithmic aspects Computational Mechanics 52,1265C1279.
【15】    S. Tang, M.S. Greene, and W.K. Liu (2012). Two-scale mechanism-based theory of nonlinear viscoelasticity. Journal of the Mechanics and Physics of Solids 60, 199-226.
【16】    S. Tang, M.S. Greene, and W.K. Liu (2011). A renormalization approach to model interaction in microstructured solids: application to porous elastomer. Computer Methods in Applied Mechanics and Engineering 217,213-225.
【17】    S. Tang, M.S. Greene, and W.K. Liu (2011). A variable constraint tube model for size effects in polymer nanostructures. Applied Physics Letters 99, 191910.
【18】    S. Tang, T.F. Guo, L. Cheng (2008). Rate effects on toughness in elastic nonlinear viscous solids. Journal of the Mechanics and Physics of Solids 56, 974-992.
【19】    S. Tang, T.F. Guo, L. Cheng (2009). Dynamic toughness in elastic nonlinear viscous solids. Journal of the Mechanics and Physics of Solids 57, 384-400.
【20】    S. Tang, T.F. Guo, L. Cheng (2009). C* controlled creep crack growth by grain boundary cavitation. Acta Materialia 56, 5293-5303.
【21】    S. Tang, T.F. Guo, L. Cheng (2008). Mode mixity and nonlinear viscous effects on toughness of interfaces. International Journal of Solids and Structure 45, 2493-2511.
【22】    S. Tang, T.F. Guo, L. Cheng (2011). Modeling hydrogen attack effect on creep fracture toughness. International Journal of Solids and Structure 48, 2909-2919.
【23】    S. Tang, T.F. Guo, L. Cheng (2009). Creep fracture toughness using conventional and cell element approaches. Computational Material Science 44, 138-144.
【24】    S. Tang, T.F. Guo, L. Cheng (2007). Rate Dependent Interface Delamination in Plastic IC Packages. 9th Electronics Packaging Technology Conference, 2007.
【25】    S. Tang, T.F. Guo, L. Cheng (2006). Vapour pressure and void shape effects on void growth and rupture of polymeric solids.
【26】    Y. Li, S. Tang, B.C. Abberton, M. Kroger, W.K. Liu ( 2013), A predictive multiscale computational framework for viscoelastic properties of linear polymers, Polymer 53, 5935-5952.
【27】    S.C. O’Keeffe, S. Tang, A.M. Kopacz, J. Smith, D.J. Rowenhorst, G. Spanos, W.K. Liu, and G.B. Olson (2015).Multiscale ductile fracture integrating tomographic characterization and 3-D simulation. Acta Materialia 82, 503-510.
【28】    T. Fu, X. Peng, Y. Zhao, C. Feng, S. Tang, N. Hu, and Z. Wang (2015). First-principles calculation and molecular dynamics simulation of fracture behavior of VN layers under uniaxial tension. Physica E 69, 224-231.
【29】    Z.Y. Guo, Y. Chen, Q. Wan, H.T. Li, X.h. Shi, S. Tang, X.Q. Peng(2016). A Hyperelastic Constitutive Model for Chain-Structured Particle Reinforced Neo-Hookean Composites. Materials Design 95, 580-590.
【30】    X. Peng, S. Tang, N. Hu, J. Han (2016). Determination of the Eshelby tensor in mean-field schemes for evaluation of mechanical properties of elastoplastic composites . International Journal of Plasticity 76, 147-165.
【31】    Y. Li, S. Tang, M. Kroger, W.K. Liu (2015). Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers. Journal of the Mechanics and Physics of Solids 88, 204C226.
【32】    D. Peng, Z. H. Zhou, Y. Li, S. Tang (2016). Computational Modeling of the Effect of Sulci during Tumor Growth and Cerebral Edema. Journal of Nanomaterials 18,3038790.
【33】    B. Hu N. Hu S. Tang et al.(2014) Tomographic reconstruction of damage images in hollow cylinders using Lamb waves. Ultrasonics 54(7).
【34】    L. Wu, G. Huang, N. Hu, S. Fu, J. Qiu, Z. Wang, and S. Tang (2014). Improvement of the piezoelectric properties of PVDF-HFP using AgNWs. RCS Advances 4, 35896-35903.
【35】    L.E. Lindgren, H. Qin, W.K.m Liu, S. Tang(2011). Simplified multiscale resolution theory for elastic material with damage. 11th International Conference on Computational Plasticity,2011.
【36】    R. Tian, S. Chan, S. Tang, A.M. Kopacz, J.S. Wang, H.J. Jou, L. Siad, L. Lindgen, G.B. Olson, W.K. Liu (2010). A multiresolution continuum simulation of the ductile fracture process, Journal of the Mechanics and Physics of Solids 58, 1681-1700.
【37】    K.I. Elkhodary, M.S. Greene, S. Tang, T. Belytschko, W.K. Liu (2013), Archetype-blending continuum theory, Computer Methods in Applied Mechancis and Engineering, on linehttp://dx.doi.org/10.1016/j.bbr.2011.03.031.
【38】    K.I. Elkhodary, S. Tang, W.K. Liu(2013). Chapter: Inclusion Clusters in the Archetype-Blending Continuum Theory.
【39】    M.S. Greene, H. Xu, S. Tang, W. Chen, W.K. Liu (2013). A generalized uncertainty propagation criterioark studies of microstructured material systems, Computer Methods in Applied Mechanics and Engineering 254, 271-291.
【40】    B. L. Boyce, S.L.B. Kramer, S. Tang et al.(2013) The Sandia Fracture Challenge: blind round robin predictions of ductile tearing, International Journal of Fracture 10(1-2):1007.

  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 高分子复合材料,金属合金和生物材料(仿生材料)的本构建模
  • 高分子材料(生物材料及仿生材料)的开发制备及跨尺度数值模拟和力学表征
  • 金属材料变形及断裂行为的跨尺度数值模拟及力学表征
  •  先进金属复合材料的开发制备及微观结构表征
    • 中国力学学会青年工作委员会委员