王德真

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 《Plasma Science and Technology》学术期刊编委

性别:男

毕业院校:大连工学院

学位:硕士

所在单位:物理学院

学科:等离子体物理

办公地点:主楼东侧楼(物理系楼)304室

联系方式:0411-84707981

电子邮箱:wangdez@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Three-dimensional simulations of edge impurity flow obtained by the vacuum ultraviolet emission diagnostics in the Large Helical Device with EMC3-EIRENE

点击次数:

论文类型:期刊论文

发表时间:2018-09-01

发表刊物:NUCLEAR FUSION

收录刊物:SCIE

卷号:58

期号:9

ISSN号:0029-5515

关键字:SOL/divertor plasma; impurity flow; spectrometer; LHD

摘要:Edge carbon impurity flow in the stochastic layer of the Large Helical Device (LHD) has been investigated with the three-dimensional (3D) edge transport code EMC3-EIRENE. The simulated synthetic C3+ impurity flow profile from EMC3-EIRENE shows a reasonable agreement with the vacuum ultraviolet (VUV) measurements according to the CIV (1548.20 x 2 angstrom) Doppler-shift spectrum. The same horizontally outward C3+ impurity flows at the top and bottom edges of the stochastic layer are determined by the 3D magnetic field structure and the parallel C3+ impurity flow velocity. The observed up-down asymmetric structure of the C3+ impurity flow at the top and bottom edges is caused by the vertical displacement of the VUV spectrometer from the midplane. The horizontally outward shift of the magnetic axis position from 3.6 to 3.9 m leads to a change of the C3+ impurity flow direction at the top and bottom edges. For a high upstream plasma density, the transport of the C3+ impurity flow is mainly determined by the background parallel plasma flow, while a reversed C3+ impurity flow is obtained for a low upstream plasma density, due to the expansion of the thermal force dominant regions. The enhanced thermal force leads to a suppression of the impurity screening effect.